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Abstract

This dissertation explores techniques to improve full-text information retrieval by
experienced computer users who are novice users of retrieval systems. An expert system
which automatically reformulates Boolean user queries to improve search results is
presented. The expert system differs from other intelligent database functions in two ways:
it works with semantically and syntactically unprocessed text; and the expert system
contains a knowledge base of domain independent search strategies. The passages
retrieved are presented to the user in decreasing order of estimated relevancy. This
combination of user interface features provides powerful, yet simple, access to full-text
documents.

Experimental results demonstrate that the expert system can improve the search efficiency
of novice searchers without decreasing their search effectiveness. Further, an evaluation of
the ranking algorithm confirms that, in general, the system presents potentially relevant
passages to the user before irrelevant passages.
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Chapter 1
Introduction

1.1 Driving Problem

Technological advances are causing a revolution in information retrieval. Optical character
recognition, word processors, and computer publishing software are capable of producing
massive quantities of online text. The development of optical storage media is making the
storage and distribution of large collections of online text feasible. Proliferation of personal
workstations, combined with modems, are allowing an increasing number of end-users to
do their own searching of online databases. Textbases, online full-text databases, are
becoming more common. BRS, a major vendor of online databases, already provides
access to over twenty full-text databases compared with just one in 1981. All these trends
lead to end-user's performing their own textbase searches.

The main roadblock to wide-spread use of online textbases will soon be the inability of end-
users to search effectively. Christine Borgman [Borgman, 1986] identifies two types of
knowledge necessary to search: knowledge of the mechanical aspects of searching (e.g.,
syntax and semantics of both the query language and the system interaction commands) and
knowledge of the conceptual aspects (e.g., ways to broaden and narrow searches using
alternative vocabulary, choosing alternative search paths). She summarizes the results of
many different user studies, concluding that, whereas system mechanics are rarely a
problem for any but very inexperienced and infrequent users, even experienced searchers
have significant problems with search strategy and output performance.

User difficulty with search strategy shows up in many different studies on searching online
bibliographic databases. Carol Fenichel [Fenichel, 1981] finds that even experienced
searchers could improve their search results. The searchers lost sight of the search logic,
missed obvious synonyms, and searched too simply. Search performance is often
measured by recall, the ratio of relevant documents retrieved to the number of relevant
documents in the entire database. The searchers were satisfied with 51% recall on
average, indicating that almost half of the relevant information was not retrieved. The lack
of successively refining queries, called iteration, is another problem identified. In spite of
the low recall, half of the searchers never modified the original query in an attempt to
improve their results.

Studies of inexperienced searchers find even more problems with search strategy. In one
study [Borgman, 1987], a quarter of the subjects were unable to pass a benchmark test of
minimum searching skill. In another experiment [Oldroyd, 1984], contrasting the
searching of novices versus experienced searchers, the novices found some relevant
documents easily, but they failed to achieve high recall and were unable to reformulate
queries well. The experienced searchers in this study were more persistent and willing to
experiment than the novices.

David Blair [Blair and Maron, 1985] paints an even bleaker picture for searching full-text
databases. Lawyers searching a legal database achieved only 20% recall, although they
were attempting to do a high recall search. The factors, as identified by the authors, leading
to this poor performance were poor searching technique (failure to use stemming and
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synonyms), stopping the query iteration too soon, and the inability to search on inter-

document relationships.

1.2 Research Overview

To address the problems identified above, I have developed a query reformulation expert
system to act as a front-end to a textbase. The expert system addresses the problems of too
little iteration and improper use of vocabulary identified in several different user studies.
This prototype augments the searching capabilities of novice users by providing automatic
query reformulation to improve the search results and automatic ranking of the retrieved
passages to speed the identification of relevant information. The hope is that, given such a
tool, novice searchers will be able to search more efficiently and more effectively. The
prototype was tested under experimental conditions to demonstrate the feasibility of an
online intelligent assistant function.

The system uses the MICROARRAS system [Smith et al, 1987] to provide full-text search
over the entire contents of the experimental textbase. A knowledge base of search
strategies guides the automatic query reformulation, similar to PLEXUS [Vickery and
Brooks, 1987] and the OCLC system [Teskey, 1987], although my collection of search
strategies is more extensive. The knowledge base is based on the published literature of
studies of expert searchers, search training manuals, consultation with professional
searcher, and my own searching experience.

Domain knowledge is supplied by a predefined online thesaurus, similar to IOTA
[Chiaramella and Defude, 1987] and IR-NLI II [Brajnik et al, 1988]. Since the domain
knowledge is separated from the searching knowledge base, the search strategies are
domain-independent. This should allow the expert system to be applied to a different
domain by merely replacing the textbase and thesaurus.

Finally, the system includes a ranking function. Jung Soon Ro's [Ro, 1988] work
comparing ranking schemes formed the basis of the ranking algorithm used. His
algorithms were modified to work with a single text database and to incorporate the
contextual information available to the expert system.

1.3 Related Work

Research to improve access to online information is proceeding in many directions. By
helping the user with the mechanics of their search, and by providing access to an online
thesaurus, better user interfaces can lead to improved search results with existing
databases. Some projects in this field are summarized in Section 1.3.1. Similarly,
allowing the user to query the database in his natural language, rather than requiring him to
form a Boolean query, may lead to simpler searching. Some natural language interfaces are
described in Section 1.3.3.

Accessing relevant information may also become easier by improving the quality of the
information that is stored in the database. The three main approaches are: representing
documents and search term as an associative network (see Section 1.3.2); using natural
language processing techniques to select index terms (see Section 1.3.3); and building a
knowledge base from the document contents. Based on the contents of the knowledge
base, the user receives direct answers to his queries, rather than documents or document
passages.
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Finally, search performance may be improved by providing an online search assistant as
the front-end to existing retrieval systems. Research in this area is summarized in Section
1.3.4. The knowledge bases for these systems, including my own, should be built on
existing searching practice. Current knowledge on good search technique is presented in
Section 1.3.5.

1.3.1 User Interfaces

As the demand for direct access to existing online information retrieval systems has grown,
so has interest in providing friendlier interfaces. Marcus [Marcus, 1981] and Meadow
[Meadow et al, 1982] describe research prototypes based on conventional programming
techniques which make existing bibliographic databases easier to search. These projects
focus on providing menu systems to guide novice users. The menus provide information
about the different databases available, selecting search terms, and connecting to a remote
database. More recently, Richard Marcus [Marcus, 1986] has proposed an online help
facility which would include a menu of query reformulation techniques.

The F-TAS system [Prasse et al, 1988] provides a state of the art menu/mouse/icon based
user interface to a full-text retrieval system. It has a state-of-the-art user interface, requiring
user terminals with graphic abilities, and is designed specifically for searching in an online
book. The user searches by accessing the book's table of contents, back of the book index,
or by doing a free-text search.

Essentially, these systems aid in the mechanical aspects of searching, with less emphasis
on helping users with the more significant conceptual problems of searching.

H. P. Giger [Giger, 1988] has built a user interface incorporating an online thesaurus. The
user enters a Boolean query which retrieves a set of documents. The user's search terms
are located in the thesaurus, from which sub-concepts and overlapping concepts can be
identified. These related concepts are then used, with the original search terms, to rank the
retrieved documents. No query reformulation is attempted.

Many projects have looked at the possibility of allowing users to query databases in natural
language, removing the need for them to form Boolean queries. Since these projects
usually incorporate some natural language processing of the database as well, they are
discussed in Section 1.3.3.

1.3.2 Associative Networks for Information Retrieval

My approach is to improve search performance by providing an expert system front-end to
existing textbases. An alternative approach to improve search performance is to change the
information that is stored in the database. Artificial intelligence research into knowledge
representation has spawned investigations into using semantic or associative networks to
implement information retrieval systems. The hope is that, by providing links between
related documents and terms in the database, relevant information will be easier to find, and
irrelevant information easier to discard.

One type of associative network that can represent a database is one based on citations and
references. Bruce Croft [Croft et al, 1988] has built such a network. He evaluates several
techniques for locating the most closely related nodes in the network. The highest ranking
20 documents from a standard probabilistic search are used as the initial nodes, and several
techniques for using the link information in the network were tested. The best technique
seems to be quite good at locating relevant documents, at low recall levels.
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THOMAS [Oddy, 1977] is a system containing an associative network with nodes .or
authors, documents, and terms. Documents are linked to documents they reference or are
cited by, to the terms used to index them, and to their authors. The user enters a set of
terms which are used to locate the most "highly involved" document. The user is expected
to browse through the connected nodes on his own. Robert Ledwith [Ledwith, 1988] is
building a semantic network of documents to allow user browsing through the Chemical
Abstracts literature. Using the available taxonomic information as his domain knowledge,
he has built a large (over 900,000 nodes) semantic network. A short description of each
document is parsed, and the document is linked into the existing semantic net. It will be
interesting to see how effectively users can navigate through such a complex structure.

AIR [Belew, 1989] is a more sophisticated associative network system. The network
contains document, term, and author nodes as in THOMAS. The user enters an initial
Boolean query which selects, or activates, some of the term nodes. Each node that is
reachable from an activated node is assigned a weight. The weight a node receives
decreases as the number of links traversed from the initially activated nodes increases. The
weight increases with the number of initially activated nodes from which it can be reached.
The propagation of the weights along the links in the network is called spreading activation.
The documents are ranked according to the total weight they receive. AIR has the added
feature that the links between nodes receive weights based on the user's relevance
feedback.

Gerard Salton [Salton and Buckley, 1988] compared a simple spreading activation model to
standard term weighting schemes. Whereas precision seems to be slightly worse for the
activation spreading formulae he used, he felt that a more sophisticated form of activation
spreading could lead to improved results.

In conclusion, search performance may be improved by changing or augmenting the
information stored in databases to include associative links. More research must be done to
demonstrate that this approach does lead to improved performance before it is included in
commercial databases. Even if associative networks do provide improvements, the cost of
improving search performance by providing an intelligent front-end is likely to be less than
approaches based on changing the contents of the databases themselves.

1.3.3 Natural Language Processing

Syntax
Several projects have attempted to include syntactic processing into the retrieval process. A
popular approach is to parse the documents in the database to identify multi-word phrases
which are then used to index the documents. Gerard Salton [Salton and Smith, 1989]
compares the sets of syntactically identified phrases with those generated statistically, as
candidates for indexing a book. Using a state-of-the-art parser from IBM, he finds that one
third of the sentence parses were seriously flawed, leading to more incorrect phrases and
more missed correct phrases than those generated statistically. However, several recent
improvements in parsing may lead to better results in the near future.

Other syntactically based systems allow the users to query the database in their natural
language. The queries are then parsed to locate hierarchical relationships between terms in
the query, called dependencies. These dependencies are searched for in the text of the
online documents. Douglas Metzler [Metzler and Haas, 1989] describes a parser which is
capable of reliably identifying such dependencies, although some sentences generate more
than one possible parse. Furthermore, A. F. Smeaton [Smeaton and van Rijsbergen,
1988] found that ranking documents based on dependencies occurring only in noun
phrases lead to improved precision.
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Semantics
Semantically based natural language processing is used for two different purposes: to
improve the performance of retrieval systems, and to build knowledge bases which are
used for question-answering systems. Some examples of the former include: ranking
algorithms which replace anaphora with the noun phrases to which they refer [Bonzi and
Liddy, 1988]; and indexing documents with word senses, identified using an online
dictionary, rather than words [Krovetz and Croft, 1989].

A hybrid system is being built by Bruce Croft [Croft and Lewis, 1987]. Full natural
language understanding is attempted on the user queries, causing a frame to be filled in.
The information in the frame is used to perform a statistical search and to rank the retrieved
documents. High-ranking documents are presented to the user, and natural language
processing is used to re-rank the medium-ranked documents.

A different type of information system, called a question-answering system, has received
much attention in the artificial intelligence world. Initially, knowledge b,.ses were
constructed by hand, and users were allowed to query the knowledge base and receive their
answers in natural language [Zarri, 1984a] [Zarri, 1984b]. BASEBALL [Green et al,
1969] was one of the earliest question-answering systems. It answered English language
questions about a database of baseball facts. Due to the limited domain of discourse, the
restricted form of user queries, and the use of deduction, BASEBALL produced impressive
results.

More recent projects have focused on automatically constructing the knowledge base from
natural language te-.t [Katz, 1988]. Some examples of question-answering systems which
build their knowledge bases from input text are Researcher [Lebowitz, 1985], which has a
knowledge base of patents, and SCISOR [Jacobs and Rau, 1988], which collects merger
and takeover information from newspaper stories. Building a knowledge structure from
natural language text is a slow and error-prone process that is currently not feasible for
large, dynamic collections of documents. Even if knowledge structures can be built and
queried effectively for large document collections, many users will want to see the actual
text of the original documents, not just a synthesized answer to their query. I agree with
Karen Sparck Jones that "The language of documents is part of their information content."
[Sparck Jones, 1983].

1.3.4 Expert Systems

The exploration of possible applications of expert system techniques to information
retrieval systems has generated interest. Early projects are surveyed by Karen Sparck
Jones [Sparck Jones, 1983] and Helen Brooks [Brooks, 1983], whereas Nicholas Belkin
[Belkin et al, 1987] summarizes more recent research. The most common goal is to
develop an expert system to help with the retrieval process by assuming some of the tasks
of the search intermediary. An exception is James Driscoll's [Driscoll et al, 1988] expert
system whose task is to index documents. This section will give an overview of expert
system projects designed for bibliographic retrieval and those which work with full-text
databases.

Bibliographic Expert Systems
Steven Pollitt [Pollitt, 19841 has built one of the earliest expert systems for bibliographic
retrieval. It is designed to search the MEDLINE medical database for cancer literature. The
expert system can search cancer literature only, since the knowledge base contains
information on cancer, rather than on search strategies in general. Whereas the
performance of the system has not been formally analysed, informal evaluations have been
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discouraging. The project has since been replaced by CANSEARCH [Pollitt, 1987], an
expert system to guide users in the use of menus to form their own queries.

IR-NLI 1I [Brajnik et al, 1988] are incorporating user modeling into a domain-independent
bibliographic retrieval expert system. Domain knowledge is supplied by an online
thesaurus. A user model is built based on the user's amount of domain knowledge and
search experience. This model is used to tailor the dialogue between the system and the
user. Initially, the user lists some terms which describe his interests. The expert system,
through a lengthy dialogue, clarifies its model of the query, proposes terms to expand the
query, and comments on the user's search strategy. No automatic query reformulation is
done.

IOTA [Chiaramella and Defude, 1987] is a bibliographic expert system which incorporates
a natural language interface. Whereas the expert system does passage retrieval from an
online book, I include the system with the bibliographic systems because retrieval is done
on keywords which index each passage. Much of the research effort has gone into
processing the user's queries, but some simple query reformulation is also done.
Specifically, queries are broadened by replacing a term by its parent from an online
thesaurus and narrowed by removing OR terms. Their results show an increase in
precision and recall using the expert system. These results are tentative, since the textbase
is very small (3,000 words), the thesaurus is small (118 classes), and only 12 queries were
run.

PLEXUS [Vickery and Brooks, 1987] is an expert system to help novice users find
information about gardening. Natural language queries are accepted, and information is
extracted to fill in frames. If a frame is too incomplete, the user is asked for more
information. Once the frames contain enough information, a query is sent to the online
database. The system has a knowledge base of search strategies and term classifications
similar to a thesaurus. Most of the domain knowledge is in the classification, but some
appears in the rule base, itself. If queries are too broad (defined as more than 10
references) , no narrowing is attempted. The references are displayed 5 at a time to the
user. If the query is too narrow (defined as nothing retrieved at all), three strategies are
attempted: 1) if two or more terms appear in the same subcategory, OR them together
rather than AND; 2) drop one of the terms; 3) replace a term by its parent. There has been
no published evaluation of the system's performauce.

Full-Text Expert Systems
There have been fewer projects aimed at providing intelligent assistance for full-text
searching. The earliest such system is RUBRIC [McCune et al, 1985] [Tong et al, 1987],
which has the user describe his query in terms of rules. These rules describe the domain
knowledge for the system as a hierarchy of topics and subtopics. Rules may have weights
representing the certainty and/or importance of the defined relationships. The lowest level
subtopics define patterns in the text which indicate the presence of that subtopic. Whereas
the query language is very powerful, it places a heavy burden on the user.

13R [Croft and Thompson, 1987] also requires the user to provide the appropriate domain
knowledge. The query process is a dialogue between the user and the system, during
which the user is asked to supply a semantic ne,.work, or thesaurus, that describes the
relationships among the concepts in his query. A blackboard architecture is employed to
control the search process, which consists of the user dialogue, probabilistic search, cluster
based search, and user feedback. There is no automatic query reformulation, but the expert
system is able to infer the presence of concepts from the presence of related concepts
described in the domain knowledge structure.
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A full-text system that incorporates query reformulation assistance is under development at
OCLC [Teskey, 1987]. The emphasis to date has been on providing an intelligent online
help function, but a few basic reformulation strategies are provided. Queries are broadened
by asking the user to OR together ANDed concepts, or to drop a concept altogether.
Narrowing is suggested when a single broad search term retrieves more than 30 passages.
If this happens, the system first searches for multi-word phrases containing the term in the
back-of-the-book index and the table of contents. These phrases, if found, are presented to
the user as alternate queries. If no such phrases are found, the system returns the passages
which are clustered. If there is no clustering of hits, a random selection is shown.

The CODER system [Fox et al, 1988] is an ambitious project that incorporates natural
language processing with expert systems techniques to produce a testbed for evaluating
advanced information retrieval techniques. It is designed for the domain of electronic mail
messages. The expert system identifies the structure within a message and semantic
relationships between messages. There is no user assistance, per se.

1.3.5 Search Strategies

The automatic query reformulation incorporated in the systems described in the previous
section are, in general, very primitive. However, search strategies employed by both
novice and experienced searchers have been widely studied. These studies formed the
basis of my expert system's searching knowledge base, which is described in detail in
Chapter 3.

Searching Studies
The most thorough catalogue of search tactics was compiled by Marcia Bates [Bates,
1979]. She outlines 29 search tactics in four areas: monitoring, file structure, search
formulation, and term manipulation. Tht; tactics for search formulation and term
manipulation describe the available techniques to broaden and narrow queries. The search
formulation tactics include the selection of appropriate initial search terms and the
manipulation of query structure; the term manipulation tactics describe the use of context,
thesaural terms, and stemming to modify queries. The tactics she lists provide the basic
operations for my expert system; however, she includes no guideline as to when each tactic
is appropriate. Bates concludes by saying that knowing when to stop a search is a difficult
problem.

Philip Smith [Smith et al, 1989] reports on a similar study as the first step to building an
online search intermediary for searching the environmental literature of Chemical Abstracts.
By analysing the discourses and actions of 17 users and search intermediaries, he compiles
a list of 19 search tactics. He believes that the search tactics he finds are domain-
dependent, but I tend to disagree. The majority of the tactics finds are similar to those
described by Bates [Bates, 1979]. Domain knowledge is involved only in selecting which
terms to include when there were too many candidates from the thesaurus. This selection
of terms from a set of candidates is called filtering.

P. W. Williams [Williams, 1984] has developed a model of all possible search situations
and all possible responses, to be used as an expert system's knowledge base. Based on the
desired, versus the achieved, values of three variables (number of documents, precision,
and recall), he identifies 64 search situations which result in 27 unique states. He defines
four variables (generality, exhaustivity, simplicity, ambiguity) which can be manipulated to
respond to each state in an attempt to achieve the desired search results. Although he
describes some techniques to manipulate the four variables, he does not indicate how the
techniques should be combined or when they should be applied. In addition, several of the
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states have conflicting demands which are hard to resolve. It is an interesting
categorization of searching situations, but it is not yet developed enough to become the
basis of an automatic search assistant.

Effects of Query Expansion
A. F. Smeaton [Smeaton and van Rijsbergen, 1983] has studied the effects of query
expansion on retrieval performance. He finds that automatically adding terms based on
their statistical relationships to the user's search terms degrades retrieval performance. He
argues the need for better criteria for selecting terms to add. Donna Harman [Harman,
1988] also shows performance degradation when adding terms from a statistically
constructed thesaurus. However, when only those thesaural terms which occur in
documents already flagged as relevant by the user are added, retrieval performance
improves over that achieved by the original query. Allowing the user to add variants of the
original search terms to the queries proves to be better than selecting from thesaural terms.
However, statistically selected terms from the relevant documents proves to be the best
candidate for query expansion. Finally, the best performance is achieved when user
filtering of the three types of candidate terms (thesaural, term variants, and statistically
selected from relevant documents) is simulated.

Carolyn Crouch [Crouch, 1988] has investigated th, use of terms from an automatically
constructed thesaurus for query reformulation. She concludes that augmenting a query
with thesaurus terms, rather than replacing the user's original search terms, improves
performance. She also advises that, for document ranking, terms included from a
thesaurus should receive lower weights.

1.3.6 Summary

This chapter has given an overview of some of the research involving information retrieval
systems. Exploratory systems incorporating sophisticated user interfaces provide
assistance with search mechanics. Whereas improved interfaces are desirable, search
strategy, not mechanics, is the main source of difficulty for searchers.

Other research systems have focused on the use of associative networks as a representation
for the database. These have not yet been shown to provide any improvements in search
results over inverted file systems, and it is not clear how they could be extended to full-text
applications.

Systems which include syntactic processing may improve indexing or query processing, if
more reliable parsers can be developed. However, they provide no assistance with search
refinement. Furthermore, systems which apply semantic pre-processing to the text seem
unlikely to be able to handle large online databases in the near future. For the near term, I
believe that retrieval breakthroughs will come from developing online intelligent assistants
to allow novice users to search easily and adequately.

1.4 Research Goals and Results

1.4.1 Goals

The goals of this research are to develop a prototype, as described in the Section 1.2, and
to evaluate its performance experimentally. The system's effectiveness and efficiency, two
measures of performance described by Gerard Salton [Salton & McGill, 1983], need to be
evaluated. Basically, the effectiveness of an information system is a measure of the system
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performance, whereas efficiency is a measure of the amount of user effort required to

perform a task. My goals, then, are the following:

Goal 1: Develop an expert system for query reformulation.

Goal 2: Demonstrate that the query reformulation expert system improves the search
effectiveness for a novice searcher [Hypothesis 1].

Goal 3: Demonstrate that the query reformulation expert system improves the search
efficiency for a novice searcher [Hypothesis 2].

Goal 4: Demonstrate that an expert system can rank the passages retrieved by the
search in decreasing order of relevance [Hypothesis 3].

Search effectiveness is measured by the number of relevant passages retrieved and the
standard information-retrieval measures of precision and recall. Precision is defined as the
ratio of the number of relevant documents retrieved to the total number of documents
retrieved. Recall is defined as the ratio of the number of relevant documents retrieved to the
total number of relevant documents in the database. Search efficiency is measured by the
number of queries and the amount of time necessary to perform the search. These
measures are calculated and reported separately. Together, they give an overview of the
effects of providing an online search assistant.

1.4.2 Summary of Results

The first goal, the development of a prototype expert system for searching in full text, was
achieved. This system was evaluated experimentally. Twelve computer science graduate
students queried three configurations of a full-text retrieval system: 1) the subjects queried
on their own, using a contextual Boolean query language; 2) the subjects queried as in 1),
but they had access to an online thesaurus; 3) the subjects queried with the help of the
online expert system. Each subject performed four monitored queries with each system.
The order of presentation of the systems, and the queries performed with each system,
were counterbalanced among the subjects. The statistically significant results of the
experiment are summarized here. For a full discussion of the experiment, and its results,
see Chapter 4.

The goal of improving the search effectiveness of novice searchers was partially
demonstrated with this experiment. The experiment asked subjects to achieve a specific
level of effectiveness and measured their efficiency. The expert system was able to achieve
an improvement in precision. A statistically significant difference was found between the
60.4% precision achieved with the expert system versus 53.0% for the users searching on
their own. The 57.6% precision achieved by the user working with the thesaurus was not
significantly different from either of the other two means. There was no significant
improvement in recall. However, since it took the subjects more queries to retrieve the
desired number of passages working without the expert system, it follows that after a set
number of queries they had lower recall without the expert system.

The most important result of this research was the achievement of the third goal, proof that
an expert system could improve the search efficiency of novice searchers. The expert
system significantly decreased the number of queries the users required to retrieve
approximately ten relevant passages (see Section 4.3.2). The user effort was cut to less
than half, from an average of 4.83 queries per question when the subject searched alone
(5.46 queries using the thesaurus) to only 2.35 queries per question using the expert
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system. Thus, the expert system enabled human searchers to search effectively with half
the effort.

The final goal, demonstrating that the expert system was able to rank order the retrieved
passages, was also achieved. Relevant passages were presented earlier in the retrieval set
than would be expected due to randomness. The normalized balance point for the ranked
passages was 0.195 (on a scale from -I to +1), compared with a balance point of 0
produced by a random ordering. The improvement was slight, but significant.

The main result of this research is to demonstrate that an expert system can make searching
easier for novice searchers. This is important because it increases the usefullness of online
full-text databases. If more people can successfully search online textbases, and they can
do so with less effort, the information stored in these textbases will become more widely
disseminated.
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Chapter 2
System Architecture

2.1 Overview

The prototype system consists of five major components (see Figure 2.1):
1) MICROARRAS, which serves as the full-text search and retrieval engine
2) a full-text database of over 188,000 words
3) a hierarchical thesaurus of approximately 7,424 words specific to the textbase's

domain
4) an expert system of 85 OPS83 rules and over 5,000 lines of C code, which

interprets the user's queries, controls the search process, analyzes the retrieved text,
and ranks the search results

5) a user interface, which accepts the user's queries, presents requests for information
from the expert system, and displays the search results.

Userxer UCO

Figure 2.1. System Architecture

The system is implemented on a Sun 3 workstation. MICROARRAS and the thesaurus
construction and access routines are written in the C language. The expert system consists
of a knowledge base of production rules, written in 0PS83, and a set of C language
functions to carry out the actions prescribed by the rule-base. The textual database for the
current demonstration project consists of an unpublished manuscript on computer
architecture written by Gerrit A. Blaauw and Frederick P. Brooks, Jr. [Blaauw and
Brooks, 1987]. The search process consists of a dialogue between the user and the expert
system. The user enters the initial Boolean query and the number of passages he would
like to retrieve. The expert system parses the query and translates it into a request for
information from MICROARRAS. MICROARRAS retrieves text passages from the full-
text database and informs the expert system of the number of passages that satisfy the
request. The expert system compares the number retrieved with the target number to decide
whether or not to reformulate the query, and, if so, how.

To expand a search query, the expert system may use three different strategies, alone or in
combination. First, it can expand individual search terms to the sets of words using the
thesaurus. The words are added iteratively, in the following order: words with the same
stem; synonyms; words which are broader in scope; narrower words; and, finally, similar
words. Second, it can relax contextual constraints. Since MICROARRAS provides

11



considerable generality in terms of segmental contexts, search expressions may contain
contextual parameters expressed in terms of any number of words, sentences, paragraphs,
etc. to either the right or left of any term in the search expression. For example, the context
for the query 'architecture AND design' may be broadened from the default context of the
same sentence to a context in which the terms must appear, in either order, within three
sentences. Finally, it can change the Boolean operators, making the query less restrictive
by replacing ANDs with ORs or removing ANDNOTs.

To restrict a search, the expert system uses the same strategies as those described above,
but in reverse. That is, it may add sets of search terms to those terms to be excluded from
the retrieval passages, contract contexts, and replace ORS with ANDs. Changing the
Boolean operators in this way will reduce the number of passages retrieved; however, it is
only likely to be useful when the user has used the incorrect Boolean operator in the
original query.

Once an appropriate number of passages is identified, the expert system attempts to rank
the passages in terms of probable relevance. It does this by performing a rudimentary
content analysis on the passages retrieved by MICROARRAS and computing a relevance
index for each. The relevance index for each passage is a function of the number of search
terms actually found in that passage, the number of distinct types for each (for terms that
are sets), and the number of different thesaural categories represented. Query structure,
distance between search terms, and frequency of the search terms in the textbase as a whole
are also taken into consideration. The retrieved passages are then sorted by their relevance
indices and presented to the user in order of probable interest.

A major advantage of this architecture is the separation of strategic knowledge, contained in
the knowledge base for the expert system, from domain knowledge, contained in the
thesaurus. Now that the search strategy rules have been developed and tested with the
existing textbase, the expert system can be tested with other content domains by simply
providing a suitable thesaurus for the new textbase.

2.2 MICROARRAS

This section describes MICROARRAS, the retrieval software. MICROARRAS developed
at the University of North Carolina under the direction of John B. Smith and Stephen
Weiss [Smith et al, 1986]. It was used without modification and is not part of this research.
However, it is described so that the reader will know which functions, required by the
expert system, were provided by the retrieval system.

2.2.1 Capabilities

MICROARRAS is an advanced full-text retrieval and analysis system. The system
provides direct access to any passage in the textbase. Users can browse through a
document's vocabulary as well as its text. MICROARRAS also provides contextual
Boolean search on any word or set of words in the text, and can calculate various numeric
distributions.

Textbase
To be inserted into MICROARRAS's textbase, a document must first be inverted. Inverted
files contain a dictionary with one entry for every unique word, called a type, and an
associated list of all the positions in the text, called tokens, of the occurrences of the type.
There is no syntactic or semantic pre-processing necessary.
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Once the documents have been inverted, they can be examined individually or in groups.
They can also be moved from one textbase to another. Thus, documents can be processed
on a workstation or microcomputer, uploaded into a textbase on a mainframe or textbase
server, searched and analyzed there, or downloaded once again for local use.
MICROARRAS can work with a textbase of many different documents, but I will confine
this discussion to textbases containing one document only since this is the way it was
used.

Segments
One of MICROARRAS's strengths is its flexibility in handling context specifications. The
system generally views a document as composed of two overlapping hierarchies of text
segments. The first denotes logical divisions, such as volume, chapter, paragraph,
sentence, and word within sentence; the second, physical divisions, such as page, line and
word within line. When a new textual database is established, the segments to be known
throughout the database are defined. In addition to these canonical segments, ad hoc
segmentations may be used for individual documents, but the user must define any
hierarchical relations among them that are to be recognized. These segmentation schemes
are used to format the display and to specify contexts for searching.

Text Display
MICROARRAS can display all occurrences of a given word along with some designated
context around each. Essentially, this is an interactive concordance or keyword-in-context
(kwic) listing. MICROARRAS can produce such displays immediately, no matter how
large the document or how scattered the occurrences. Contexts for searches can be
indicated in terms of words, sentences, paragraphs, etc., for the entire search expression or
for different parts of it.

Lexical Display
MICROARRAS can access an alphabetical lexicon of the words that appear in a document
or passage. Lexical information may be returned in one of three ways: by alphabetic
sequence, by pattern of characters, and by frequency of occurrence in the document or
passage.

Categories
One particularly important feature for this project is a generalized categorization option by
which one may define a category which contains groups of words. MICROARRAS
supports three types of categories: token lists, type lists, and recursive lists. Token lists are
sets of text positions representing individual occurrences of words; for example, the
specific places in a document where processor refers to a computer rather than a food
processor. Type lists represent sets of word types. When they are evaluated for a
particular passage, they yield a token list containing each instance in the passage of the
members of the type list. For example, the type list cpu-category may contain cpu and
central processing unit. Evaluating cpu-category with the Blaauw and Brooks textbase will
create a token list containing all occurrences of either cpu or central processing unit in the
textbase. Recursive categories are sets of other categories; for example, a new category
consisting of the cpu-category and the memory-category.

Search
To conduct a search, the user must specify three components: a Boolean contextual
expression, a passage in which to evaluate the expression, and a category in which to store
the resulting set of positions where the expression occurs (a token list). The expression is
any Boolean combination of words or category names. If categories are used, they imply
every occurrence of any word type included. For example, the query 'memory-category
and (within the same sentence) location' can be evaluated against a particular textbase, or
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part of a textbase. The result will be a token list of occurrences of members of memory-
category which appear in the same sentence as the word type location.

Contexts in which search expressions are evaluated can be specified in terms of any text
segment units valid for the textbase and can be specified in any number. Thus, one can
look for all occurrences of 'cpu-category and memory-category' within, say, three words
of one another, or within the same sentence, or within three sentences, or in the same sub-
section, etc. Different contexts can also be specified for sub-expressions, e.g. 'cpu-
category AND (within three words) memory-category ANDNOT (within the same sentence)
hardware-category'.

Arithmetic Functions
MICROARRAS provides facilities to compute various textual measures, display the
results, or pass them to an external statistical analysis package. Two kinds of data can be
computed. The first is frequencies of words or categories within a specified passage.
Thus, the user can compute and display the frequency with which a word or category
appears in a paragraph, a chapter, or the whole textbase. The second major class of
statistical data are segmental measures. These determine the number of times one
segmental measure occurs within another. For example, the number of words within a
paragraph, or the sentences in a document. These measures can be stored as scalar or
vector numeric variables of integers or reals which can be later analyzed by a statistical
package.

2.2.2 Implementation

Document Flow
Preparing a document for use by MICROARRAS is a four-step process. First, it must be
transcribed into a machine-readable form with internal marks indicating logical segments
(such as chapters, sections, and paragraphs) and physical segments (line and page).
Second, a correspondence is made between the segment names used in the document and
the set of segment names used in the textbase as a whole, the canonical set of segments.
For example, the canonical segment PARAGRAPH may be indicated by Nparagraph in one
document and Npara in another. Third, the document is scanned and inverted. Finally, the
inverted text is inserted into the textbase.

Flange
FLANGE is a two-way command language that was developed as part of the
MICROARRAS system. Consequently, it serves two major functions: it provides
communication between the user interface and the analytic engine that performs all search
and analysis operation, and it provides a formal specification for the system. It is written in
a BNF-like notation. Consequently, programs can easily construct command expressions
which, in turn, can easily be parsed. Additionally, the components of a FLANGE
"sentence" are strongly typed to simplify processing and to ensure reliable transmission
across a communication interface.

It is FLANGE's capability of providing a formal high-level text analysis language and its
capability of delivering its results in a structured and typed form - rather than as a stream of
data - that makes it feasible for an expert system to work iteratively with the textbase.

One particularly useful feature of FLANGE is its two-way communication capabilities.
The following example shows a typical interaction between MICROARRAS's user
interface program and its analytic engine. Suppose the user wishes MICROARRAS to
display concordance information for a particular word in a text in the textbase. The user's
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request for a concordance is first translated by the interface program into a FLANGE
expression. That expression is then sent to the MICROARRAS engine, either running on
the same machine or on a remote computer. The engine parses the message and performs
the operation requested. It then encodes the results in the conventions of the return portion
of FLANGE and sends that message to the user interface. The user interface parses the
messages, interprets the result, and either displays the requested information to the user or
engages the engine in a further FLANGE dialogue.

2.3 Textbase

The textbase contains the Fall, 1986 draft of Computer Architecture, Volume 1 -Design
Decisions by Blaauw and Brooks. The manuscript consists of 188,278 words comprising
8 chapters, titled: "Introduction", "Machine Language", "Addresses", "Data",
"Operations", "Instruction Sequence", "Supervision", and "Input/Output". It was chosen
as the test text because

1) it was available online.
2) I was familiar with the text's content domain.
3) I was familiar with the text itself.
4) there was a ready supply of experimental subjects (fellow computer science

graduate students) who were familiar with the text's content domain.
5) the text was large enough for a realistic demonstration of feasibility; there were

over 3,000 paragraphs in the text providing many different possible retrieval
sets.

6) the text was small enough to economically process and store online.
7) the scope of the text was broad enough to answer any of a large collection of

queries.
8) the scope of the text was dense enough to provide answers to most questions

within the text's coverage.

Texts to be used as MICROARRAS textbases require format marks of interest to users to
be inserted in the text. TeX format marks were already present and were used as the basis
for the MICROARRAS segments. These included format marks to be used in the display of
the retrieved text (line, italics, label), as well as those which provide context information
(chapter, section, subsection, subsubsection, paragraph, sentence, item). A series of
programs are then run on the formatted text to produce an inverted file. Finally, this
inverted file is converted to fixed length records for fast access.

2.4 Thesaurus

All domain-specific knowledge is contained in a hierarchical thesaurus. The expert system
uses this information to reformulate queries. The thesaurus was built by the author from
the Brooks and Blaauw text, and it strongly reflects the word usage of that textbase. For a
commercial database of many texts or documents, the thesaurus would need to be broader
in scope. Ideally, individual users should be able to tailor the thesaurus to better reflect
their areas of interests. For example, they may wish to add specific words to the thesaurus
that are too narrow in scope, or too infrequent, to be included in a general thesaurus.

2.4.1 Logical Structure

This section describes the structure of the thesaurus. There are several thesaurus constructs
that require definition. Word types which share a common stem are grouped into
stemgroups. The members of a given stemgroup are called stemwords. Each word type
in the Blaauw and Brooks text appears in exactly one stemgroup. Thesaurus classes
contain stemgroups which are synonyms for each other. Stemgroups may appear in zero,
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one, or more than one thesaurus class. Because the thesaurus classes are linked together
with parent-child links, they are also referred to as nodes. The arrangement of the words
into stemgroups, stemgroups to thesaurus classes, and the classes into a hierarchy is
discussed. Throughout this discussion, word types will be written in lowercase,
stemgroup names with a leading uppercase letter, and thesaurus class names in uppercase.
At the lowest level, words with the same root are grouped into stemgroups. A stemgroup
contains all the words which lexically share the same root. Most are easily identified by
sorting the dictionary of word types in the database. Common forms of word types not
used in the textbase - for example if there was no plural of a noun - are added to the
stemgroup. Consider the grouping of words with the root, structure.

Stemgroup Name: Structure
Stemwords: structure, structuring, structured, structures

In addition to words which were lexically similar, words which are semantically forms of
the same stem were included. Thus, run is in the same stemgroup as ran. Finally, each
stemgroup also contains words formed from the stem by the use prefixes. Thus,
undecided is in the same stemgroup as decided.

Next, stemgroups pertaining to technical concepts are identified. Synonyms among these
stemgroups are combined to form thesaurus classes. Non-technical terms are not included
in the thesaurus. Extremely low-frequency stemgroups are also excluded. Low-frequency
stemgroups represent unimportant, little-discussed concepts, and excluding them detracts
very little from recall, while decreasing the size and complexity of the thesaurus [Salton &
McGill, 1983].

High-frequency stemgroups represent broad concepts discussed throughout the text. To
improve precision, most thesauri replace high-frequency stemgroups with multiple word
phrases, or they exclude them altogether. In this system, I combine high-frequency
technical stemgroups, for example data and structure, to form lower-frequency multiple
word phrases, e.g. data structure, which are included in the thesaurus. However, I also
include the high-frequency stemgroups, because the user is likely to use these words, and I
want the expert system to be able to use the thesaurus to direct them to narrower terms.
The expert system filters out these stemgroups if they are introduced during thesaurus
expansion.

Finally, an ordering is imposed on the thesaurus classes. Conceptually, a thesaurus class
can be viewed as a node in a lattice structure (see Figure 2.2). Each node contains a name,
a list of synonym stemgroups, the names of zero or more parent nodes, and the names of
zero or more child nodes. Parent nodes - nodes higher in the thesaurus structure -
represent more general concepts than the current node. Child nodes - nodes lower in the
thesaurus structure - represent more specific terms. Nodes containing multi-word phrases
have as parents the nodes containing each of the component stemgroups. For example,
consider the thesaurus entry for DataStructure:

Node Name: DATASTRUCTURE
Node Stemgroups: DataStructure
Parent Node(s): DATA, STRUCTURE, NAMESPACE
Child Nodes(s): ARRAY, QUEUE, STACK, LIST

Notice that in Figure 2.2 vector is shown as a synonym for array and matrix. Whereas
mathematically a vector is more properly a particular type, or child, of an array, in an
architectural sense they are so closely related as to be treated as synonyms. A user
interested in vector processors is likely to be interested in array processors, as well.
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Name Space

Name- Structure Data Format
Space

Figure 2.2. A Sample Thesaurus.

2.4.2 Thesaurus Words

The thesaurus was manually constructed from the 8,313 different word types in the
textbase. Removing numbers, punctuation, English function words, proper names, and
words which appeared only once left 5,726 types. These were grouped into 1,993
sterngroups; common word forms missing from the stemgroups were added, bringing the
total to 6,990 types. Using a concordance and frequency of occurrence, 936 technical
stemgroups were selected to be arranged hierarchically in the thesaurus from the 1,993
available. The construction of the thesaurus relied on the procedure outlined by Gerard
Salton [Salton and McGill, 1983], the author's knowledge of computer architecture, and
the hierarchical arrangement of sections in the Blaauw and Brooks text.

Before the stemgroups were placed into classes of synonyms to be arranged hierarchically,
they were first partitioned into loose collections of related terms, called buckets. Each
stemgroup was placed into one of the following buckets: architecture, sequencing,
languages, hardware, formats, control operations, data operations, data representation,
operating systems, memory, input/output. High-frequency stemgroups were combined to
form multi-word phrases, which were added to the appropriate buckets. Ambiguous
stremgroups were placed in more than one bucket, as necessary.

The synonym stemgroups in each bucket were grouped into thesaurus classes, and a lattice
structure was imposed on all the classes in the bucket. The concordance was used again to
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direct the formation and arrangement of the classes. Because there were few cross-bucket
references, dealing with one bucket at a time allowed me to decrease the complexity of the
hierarchical arrangement task. Finally, the lattices for all the buckets were merged. In all,
7,424 words in 2,253 stemgroups were arranged into 753 thesaurus classes.

2.4.3 ASCII Files

The ASCII files describing the contents and structure of the thesaurus are created manually.
Separate files enumerate each of the words, stemgroups, thesaurus classes, and hierarchical
arrangement of the thesaurus classes.

dict ascii contains all the word types used in the textbase, plus the added common word
forms and multi-word phrases. The words are stored in lower case, only. For the
purposes of this description, word refers to a single word type only, whereas dictword
refers to either a single word or a multi-word phrase. stems ascii contained the grouping
of dictwords into stemgroups. nodes ascii contained the grouping of stemgroups into
thesaurus classes, links ascii contained the links connecting thesaurus classes. Each of
these files will now be described in more detail.

The first file created was stemsascii, which contains one line per stemgroup. This file is
sorted in ascending order by Stemname. Multi-word phrases, e.g. datastructure, always
contain an underscore.

Syntax: Stemname word+ I wordword
Examples: Data data datum

Data_Structure datastructure data_structures
Array array arrays

dict_ascii is created from stemsascii by running a utility called createdict.. Each dictword
in stemsascii is placed on a separate line, followed by -1. dictascii is then sorted into
ascending order.

Syntax: dictword -I
Examples: data -1

datastructure -1
datastructures -1
datum -1

The fixed-length version of the dictionary file includes the index in the stem file of the
stemgroup containing each dictword. The ASCII dictionary file, dict_ascii, has these
indices initialized to -1.

Each line of nodes_ascii defines one thesaurus class.
Syntax: NODENAME dictword+
Examples: DATA data

DATASTRUCTURE datastructure
ARRAY array matrix vector

Whereas logically each NODENAME is a grouping of stemgroups, I found it simpler to
represent a stemgroup by one of its member dictwords thin to use the Stemname. Since a
dictword may only appear in one stemgroup, there is no ambiguity introduced by using
dictwords, instead.

The arrangement of the classes into a lattice is described in links-ascii. There is one line
for each node defined in nodes-ascii. The line contains the NODENAME for the node
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followed by the NODENAMES of its children, if any. Each thesaurus class in nodeascii
has an entry, even if it has no children. The file is sorted in ascending order by the parent
NODENAME.

Syntax: NODENAME NODENAME*
Examples: DATA DATASTRUCTURE DATAFORMAT

DATASTRUCTURE ARRAY, QUEUE, STACK, LIST
STRUCTURE DATASTRUCTURE

2.4.4 Binary Files

The final phase in the creation of the thesaurus was to convert the ASCII files, described in
the previous section, to binary files. Most of the entities in the system (e.g. words,
stemgroups, thesaurus classes) are of variable size, indicating that variable length records
would provide an efficient use of space. However, I chose to use fixed length records to
allow direct access to a given record via its index. Thus, I decided to trade space for time.

The thesaurus is composed of three binary files:
dict: contains a record for each dictword
stem: contains a record for each stemgroup
node: contains a record for each thesaurus class

The record structure for each of the files will be described next. The following format will

be used to describe the records:

field name field name field name

field contents field contents field contents

field size field size field size

(in bytes) ( in bytes) ( in bytes)

Figure 2.3. A sample record.

A dict entry has two fields, dictword and dictstem (see Figure 2.4). Dictword is
MAXWORDLENGTH (the maximum dictword size) bytes long and contains a word type
or multiple word phrase. Dictstem is an integer index into the stem file indicating the
stemgroup to which the dictword belongs. Dict is created from dictascii, which contains
all word types and in which dictstem is initialized to - 1.

dictword dictstem

word or multi-word phrase index into stem

MAXWORDLENGTH sizeof( integer)

Figure 2.4. A dict record.

A stem entry has three fields: stemname, stemwords, and stemnodes (see Figure 2.5).
Stemname is MAXWORDLENGTH bytes long and contains the name of the stemgroup.
Stemname is taken directly from stemsascii. Stemwords is an array of
MAXWORDSPERSTEM (the maximum number of words in a stemgroup) integer indices
into the dict file, indicating the words contained in the stemgroup. All elements of
stemwords are initialized to -1, then dict is searched for each word in the stems-ascii entry,
and its index is used to set the stemwords elements. At the same time, the dictstem entry
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for the word is updated to contain the index of the current stemgroup. Stemnodes is an
array of MAXNODESPERSTEM (the maximum number of nodes in which a stemgroup
may appear) integer indices into the node file, indicating the nodes to which the stemgroup
belongs. All elements of stemnodes are initialized to -1.

stemname stemwords stemnodes

word (index into dict or- 1) (index into node or - 1)

MAXWORD sizeof( integer) * sizeof( integer) *
LENGTH MAXWORDSPERSTEM MAXNODESPERSTEM

Figure 2.5. A stem record.

A node entry has four fields: nodename, nodestems, parents, and children (see Figure 2.6).
Nodename is MAXWORDLENGTH bytes long and contains the name of the nodegroup.
Nodename is taken directly from nodesascii. Nodestems is an array of
MAXSTEMSPERNODE (the maximum number of stemgroups a node may contain)
integer indices into the stem file, indicating the stemgroups contained in the node. All
elements of nodestems are initialized to -1, then dict is searched for each word in the nodes_
ascii entry, and its dictstem entry is used to set the nodestems elements. Parents is an array
of MAXPARENTSPERNODE (the maximum number of parents a node may have) integer
indices into the node file, indicating the parent nodes of the current node. The elements of
parents are initialized to -1. Children is an array of MAXCHILDRENPERNODE (the
maximum number of children a node may have) integer indices into the node file, indicating
the child nodes of the current node. The elements of children are initialized to -1.

nodename nodestems nodeparents nodechildren

word I (index into node or -1) (index into node or -1) (index into node or -1)

MAXWORD sizeof(integer) * sizeof(integer) * sizeof(integer) *
LENGTH MAXSTEMSPERNODE MAXPARENTSPERNODE MAXCHILDRENPERNODE

Figure 2.6. A node record.

Finally, links-ascii is processed to fill in the children and parents fields of node. As each
entry of links_ascii is read, node is searched for the first nodename of the entry. The index
of this nodename is the parent index. Next, the node is searched for each of the child
nodenames, in turn. For each child index, the children field of the parent index entry is
updated to include the child index. Also, the parent field for the child index entry is
updated to include the parent index. The fixed length files now contain all the information
provided by the ASCII files. Figure 2.7 shows the files created for the thesaurus shown
in Figure 2.2.

2.4.5 Thesaurus Access Routines

The previous section outlined how the thesaurus stores information. This section discusses
how that information may be accessed. First, the primitive routines which merely return
information stored in the thesaurus will be described, followed by the higher level routines
which implement the functions needed by the expert system. The following syntax will be
used to describe the routines:

FunctionName( input parameter) -> returned value [ I returned value ]*.
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The parameter types are fields of the records described in Section 2.4.4.

dcwcrd dictstem
0 army 0
1 arrays 0
2 data 1
3 daa format 2 stemname stemwords stemnodes

4 daa_structure 3 0 Array 0 1 -1 .......- 1 0-1...-1

5 datum I 1 Data 25 -1 ............. 1. I - -
6 f2 DataFormat 3 -1 ............... -1 2 -1 ...- 1
7 frmat 3 DataStructure 4 -1 ............... - 1 3-1

8 formats 4 Fifo 6 -1 ............... -1 9 -. -18 fo 5 Format 789 10-1 ...... -1 4-1...-I
1 formatting 6 Lifo 11 -1 .............. -1 11 -1 ..-1

- 7 List 12 13 -1 ......... -1 5-1...-1
11 lifo 6 8 Matrix 14 15-1 ......... - -1 - .- 1
12 list 7 9 Name 16 17 18 19 -1..-1 6-1 ...- 1
13 lists 7 10 Name.Space 20-1 .......- 1 7-1...-1

14 matrices 8 11 Object 21 22-1 ......... -1
15 matrix 8 12 Queue 23 24 25 26 -1.. -1 9-1 ...- 1

16 name 9 13 Space 2728-1 ..... -1 10-1..-1
17 named 9 14 Stack 2930-1 .......... 1 11 -1..-1

18 names 9 15 Structure 3132 33 34 -1 ...-1 12-1..-1

19 naming 9 16 Vector 35 36-1 .......... 0-1...-1

20 namnespace 10 (b) stem
21 object 11
22 objects I12 ojets I Inodename nodestems nodeparents nodechildren

24 quewd 12 0 Y 0816-1..-1 3-1 ..... -1 -I ........... -I
25 queues 12 1 ATA 1 -1 ....... -1 -1 ... 1. 1 23-1 ...... -I

26 queuing 12 2 ATAFORMAT 2-1 ....... -1 14-1..- -I ........... -1
27 space 13 3 ATA-STRUCTURE 3 -1 ....... -1 1 12-1.-I 9 110 5 -I..-I

28 spaces 13 4 ORMAT 5-1 ....... -1 -1 ....... -1 2-1 ......... -1
29 stack 14 5 LST 7-1 ....... -1 3 -1 . --1 ......- I
30 stacks 14 6 AME 9-1 ........ -1 -1 ....... -1 7-1 ......... -1

31 structure 15 7 AMESPACE 10-1 ..... -1 610-1.-1 8-1 ......... -I
32 structured 15 8 BJECT 11.-1 ...... 1 7-1 ..... -1 -1 ........... -1

33 structures 15 9 UEUE 412-l...-1 3 -1 . - -1 ......- 1
34 structuring 15 10 PACE 13-1 ..... -1 -1 ....... -1 7-1 ......... -1
35 vector 16 11 TACK 614-1...-1 3-1 ..... -I -I ........... -1
36 vectors 16 12 STRUCTURE 15-1 ..... -1 -1 ....... -1 3-1 ......... -1

(a) dict (c) node

Figure 2.7. The Sample Thesaurus's Files.
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Primitive Routines
The primitive routines provide access to the raw data stored in the thesaurus files. Since
the thesaurus was implemented using fixed-length records, information can be accessed
directly. The index into the file is multiplied by the size of the file's records to provide the
offset into the file of the desired record. The examples are based on the thesaurus files
shown in Figure 2.7.

DSearch( dictword ) -> dictindex I error
This routine does a binary search of dict to return the index of dictword.
Example: DSearch( matrices ) -> 14.
'matrices' is the 14th record in dict.

DGetStem( dictindex ) -> stemindex I error
This routine returns the contents of the stemindex field of the dictindexth record of
dict.
Example: DGetStem( 14) -> 8.
The 14th entry of dict (matrices) is a member of the 8th stemgroup (Matrix).

DGetWord( dictindex ) -> dictword I error
This routine returns the contents of the dictword field of the dictindexth record of
dict.
Example: DGetWord( 14) -> matrices.
The 14th entry of dict is matrices.

SGetName( stemindex ) -> stemname I error
This routine returns the contents of the stemname field of the stemindexth record of
stem.
Example: SGetName( 8 ) -> Matrix.
The name of the 8th stemgroup is Matrix.

SGetWords( stemindex ) -> stemwords I error
This routine returns the contents of the stemwords field of the stemindexth record of
stem.
Example: SGetWords( 8 ) -> 14, 15, -1, ..... -1.
The 8th stemgroup (Matrix) contains dictwords 14 (matrices) and 15 (matrix).

SGetNodes( stemindex ) -> stemnodes I error
This routine returns the contents of the stemnodes field of the stemindexth record of
stem.
Example: SGetNodes( 8 ) -> 0, -1, .... -1.
The 8th stemgroup (Matrix) is a member of node 0 (ARRAY).

NGetName( nodeindex ) -> nodename I error
This routine returns the contents of the nc, '-name field of the nodeindexth record of
node.
Example: NGetName( 0) -> ARRAY.
The 0th node has the name ARRAY.
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NGetStems( nodeindex) -> nodestems I error
This routine returns the contents of the nodestems field of the nodeindexth record of
node.
Example: NGetStems( 0) -> 7, 8, 16, -1, ..., -1.
The 0th node (ARRAY) contains the stemgroups 7 (Array), 8 (Matrix), and 16
(Vector).

NGetParents( nodeindex) -> parents I error
This routine returns the contents of the nodeparents field of the nodeindexth record
of node.
Example 1: NGetParents( 0) -> 3, -1, ... , -1.
The 0th node (ARRAY) has node 3 (DATASTRUCTURE), as its parent.
Example 2: NGetParents( 3 ) -> 7, 1, 12, -1, ..., -1.
The 3rd node (DATA-STRUCTURE) has nodes 7 (NAME_SPACE), 1 (DATA),
and 12 (STRUCTURE) as its parents.

NGetChildren( nodeindex ) -> children I error
This routine returns the contents of the nodechildren field of the nodeindexth record
of node.
Example: NGetChildren( 3 ) -> 9, 11, 0, 5, -1, .... -1.
The 3rd node (DATA-STRUCTURE) has nodes 7 (QUEUE), 11 (STACK), 0
(ARRAY), and 5 (LIST) as its children.

Higher Level Routines
The primitive routines described above can be used to implement the thesaurus functions
needed by the expert system. The following higher level thesaurus access routines are used
by the expert system:

1) map from a word to its stemgroup.
The algorithm, in pseudo-C, is:
DSearch( word ) -> dictindex
DGetStem( dictindex ) -> stemindex

2) map from a stemgroup to the set of all words with the same stem.
The algorithm, in pseudo-C, is:
SGetWords( stemindex) -> stemwords
For each stemword

DGetWord( stemword) -> dictword

3) map from a stemgroup to the set of all nodes containing that stemgroup. Once the
nodes are found, their names can be displayed.
The algorithm is:
SGetNodes( stemindex) -> stemnodes
For each stemnode

NGetName( stemnode) -> nodename
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4) map from a stemgroup to the set of all synonym words for that stemgroup.
The algorithm is:
SGetNodes( stemindex) -> stemnodes
For each stemnode

NGetStems( stemnode ) -> stemindex
SGetWords( stemindex) -> stemwords
For each stemword

DGetWord( stemword) -> dictword

5) map from a stemgroup to the set of more general (parent) words.
The algorithm is:
SGetNodes( stemindex ) -> stemnodes
For each stemnode

NGetParents( stemnode) -> nodeparents
For each nodeparent

NGetStems( nodeparent) -> nodestems
Map from nodestems -> words as in 1.

If the stemnode is the root of the tree, i.e. has no parents, all the node indices in
nodeparents will be -1.

6) map from a stemgroup to thesaurus classes of more specific words. This
would be done in a manner similar to 4, substituting NGetChildren for
NGetParents. If the stemnode is a leaf of the tree, i.e. has no children, all the
node indices in nodechildren will be -1.

7) map from a stemgroup to thesaurus classes of related (sibling) terms.
The algorithm is:
Map from stemgroup -> parentnodes as in 5.
For each parentnode

Map from the parentnode -> childnodes as in 6.
For each childnode

Map from the childnode -> nodestems.
Map from nodestems -> words as in 1.

8) determine the hierarchical relationship, if any, between two words. This can be
done by mapping from each of the words to their node sets and then looking for
relationships between the nodes. In this implementation, the routine looks for
self, parent, child, or sibling. In all other cases, it returns none.

Other functions could be defined from the primitives, if needed. For example, the next

most useful functions might be grandparent, grandchild, cousin, etc.

2.5 User Interface

This section presents the current user interface for the research prototype. A basic
command line interface was used. The interface implemented for this research prototype is
straightforward and not one of the major thrusts of the project.

2.5.1 Query Language

When the user starts the system, the following prompt appears:
Enter a query, or quit, terminated by <return>:

The system expects a Boolean query. A Boolean query language was chosen because it is
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the most common type available on existing systems. I wanted the main difference
between this prototype and conventional full-text retrieval systems to be the searching
knowledge base so that any improvement in search performance could be attributed to the
encoded search strategies, rather than the user interface. Possible improvements to the
interface are discussed in Section 5.1.1.

Operators
The operators provided, in decreasing order of operator precedence, are: ANDNOT, AND,
and OR. A logical equivalent to any Boolean expression can be constructed using these
operators. Where there are two or more operators of equal precedence, they are evaluated
left to right. Parantheses have the highest priority and can be used to override the default
order of evaluation. The operators are distinguished from the search words by their
position. A formal grammar for the query language appears later in this section.

Search Terms
When a query is parsed, the expert system interprets each search term to represent a unique
area of interest, or concept, specified by the user. The concepts, and the operators, are
flagged as positive or negative based on whether they are specifying information the user
does, or does not, wish to receive. For example, the query 'i/o ANDNOT (device OR
interrupt)' contains three concepts: ilo, device, and interrupt. I/O is a concept on which the
user wishes information, so it is considered a positive concept. Device and interrupt
indicate concepts on which the user does not wish information, so they are considered
negative concepts. The ANDNOT and OR operators are followed by negative concepts, so
they too are flagged as negative.

Context
A default context of one sentence is used for the AND and ANDNOT operators. For
example, 'virtual AND memory' will retrieve all passages in which virtual and memory
appear within the same sentence, regardless of order. Similarly, 'page ANDNOT fault' will
retrieve passages in which page appears, but not those in which it appears within the same
sentence as fault.

When the user is searching with the expert system, the expert system controls the context.
Initially, the default of one sentence is used, but the expert system may adjust the context
during query reformulation. However, when the user is searching without the expert
system, the AND and ANDNOT operators may be augmented with a user-specified context.
The user may define the search context for AND or ANDNOT in terms of words, sentences,
or paragraphs. The most general context definitions have the form:

left-expression operator [integer1 to integer2 units] right-expression
where integer1 must be smaller than or equal to integer2, and units is either words, or
sentences, or paragraphs. The integers specify the range around the tokens satisfying the
left-expression (tokenL) in which the tokens satisfying the right-expression (tokenR) must
appear. 0 represents the unit containing the token from the left hand side. Thus, the
default context of one sentence is equivalent to

0 to 0 sentences
indicating that tokenR must appear in the same sentence as tokenL. An abbreviation for
this context, sentence, is provided for the user's convenience.

Negative integers indicate that tokenR must precede tokenL; positive integers indicate that it
must follow. Thus,

-5 to +3 words
specifies that tokenR must appear in the region around tokenL that includes the 5 words
preceding tokenL and the 3 words following it. If one is looking for paragraphs containing
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a specific phrase, for example computer architecture, one would use the query
computer AND [+I to +1 words] architecture

which requires that architecture immediately follow computer. There is also a shortform
for this relationship, called nextword.

Finally, since the retrieved passages are one paragraph long, search expression contexts
should not be larger than one paragraph. Thus, the only valid context involving the unit
paragraph is

0 to 0 paragraphs
and this context is abbreviated by paragraph.

When user-defined contexts are evaluated, they may cross paragraph boundaries. For
example, if the user has specified a context of plus or minus three sentences, tokenR may
appear in a different paragraph than tokenL. In this case, MICROARRAS retrieves the
paragraph containing tokenL. In contrast, when the expert system controls the context, it
builds more complicated contexts which eliminate hits if the tokens do not appear in the
same paragraph.

Formal Grammar
The context-free grammar for the query language described above is specified in modified
Backus-Naur form. Syntactic constructs are denoted by capitalized English words, literal
tokens appear in boldface, and optional constructs appear between meta-brackets { and 1.
Constructs superscripted by + may appear one or more times.

Expression -> AndTerm I Expression Or AndTerm
AndTerm -> AndnotTerm I AndTerm And ( [ Context] ) AndNotTerm
AndNotTerm -> Factor I AndNotTerm Andnot Factor
Factor -> Word I ( Expression)
Or-> or I OR
And -> and I AND
Andnot -> andnot I ANDNOT
Context -> Integer To Integer Unit I nextword I sentence I paragraph
Unit -> word I sentence I paragraph I words I sentences I paragraphs
To -> to I TO
Integer -> ( + I. ) Digit+
Digit -> 01 11 21314151 6171819
Word -> printable character+ Terminator
Terminator -> tab I newline I space I [ I ] I ( I)

The above grammar contains left-recursion, which must be removed to allow a recursive
descent parser to be built for the language. The definitions for Expression, AndTerm, and
AndnotTerm are rewritten as follows (the Greek symbol epsilon (e) represents the empty
string):

Expression -> AndTerm Expression'

Expression' -> Or AndTerm Expression' I
AndTerm -> AndnotTerm AndTerm'
AndTerm' -> And ( [ Context ] ) AndnotTerm AndTerm' I e
AndnotTerm -> Factor AndnotTerm'
AndnotTerm' -> Andnot ([Context]) Factor AndnotTerm' I e
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2.5.2 Guidance Requests

The expert system can run independently or interact with the user during query
reformulation. When the system is run interactively, the expert system makes two types of
guidance requests: after each reformulation step, if the reformulation is not complete, it
asks the user whether or not he wishes to continue query reformulation; and when search
terms (other than stemwords) are selected from the thesaurus, the user is asked whether or
not to add them to the appropriate concept group. The prompts for the two requests are:

<Query is shown here.>
Passages retrieved by the previous query: n. Decision: broaden or narrow or success.
Continue reformulation? Enter y or n <return>:

Add stemgroup stemname to concept original word? y or n <return>:

2.5.3 Passage Presentation

Once the system has completed query reformulation, either because it reached the target
number or the user stopped the reformulation process, the user is asked whether or not he
wishes to read the retrieved passages with the following prompt:

Query n retrieved m passages.
What next? d (display) or q (new query) <return>:

If he asks to view the passages, he will see the a 'Retrieving text.' message if there are
fewer than MAXPASSAGES in the retrieval set. MAXPASSAGES is set to 25 for this
version of the prototype. For the experiment, after each passage the user was asked for
relevance feedback with the following prompt:

Enter 0 (not relevant), or 1 (somewhat relevant), or 2 (very relevant) <return>:
If there are more than MAXPASSAGES in the retrieval set, the message 'Too many
passages to display' is generated and the user is prompted to enter a new query.

2.6 Expert System

This section contains an overview of the expert system, a description of its interactions
with other system components, and a sample scenario. The knowledge base contents
which cause the actions described here are discussed in Chapter 3.

2.6.1 Overview

The expert system performs three main functions: it acts as system controller, it
reformulates the Boolean query based on previous search results, and it ranks the retrieved
passages in decreasing order of estimated relevance for presentation to the user. To
perform these functions, it uses a knowledge base of search strategies and text analysis
procedures. As pointed out earlier, all domain knowledge is contained in the thesaurus.

The expert system interacts with three other system components (see Figure 2.1): the user
interface, MICROARRAS, and the thesaurus. This section describes the expert system's
interactions with MICROARRAS. The expert system's use of the thesaurus is described in
Section 2.4.5, and the user interface interactions are described in Section 2.5.2.

2.6.2 Interaction with MICROARRAS

System Startup
The system as a whole is started by invoking the expert system. This causes OPS83 to
start and to load the expert system rules and C code. An OPS83 prompt is displayed and
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the working memory element start is created by entering +start. Entering xx to the next
OPS83 prompt begins the rule matching, which is the heart of the expert system. The
execution ends when no rules can be matched with the contents of working memory. A
final OPS83 prompt is displayed, and entering q exits the system.

The expert system can run on the same workstation as MICROARRAS, or it can run the
retrieval engine on a remote workstation. In the first case, the expert system forks off a
child process which runs MICROARRAS. The two processes communicate through pipes
opened by the expert system. In the second case, the expert system creates a process on a
remote workstation using rexec to execute MICROARRAS and the two communicate over
the network.

FLANGE
The expert system sends and receives FLANGE messages to interact with MICROARRAS.
The messages sent and received are placed in a 1025 byte buffer (1024 bytes plus 1 byte
for a null terminator). If a reply from MICROARRAS is too long to fit in the buffer, this
condition is flagged by placing a continue character at the end of the message. This flag
causes the buffer to be emptied and a continue message to be sent to MICROARRAS to
refill the buffer. There are several C routines written to pack and unpack the various
FLANGE messages, and to synchronize the buffer access.

The expert system uses many of MICROARRAS's capabilities. Context specification is
used to define passages of length one paragraph and default searching contexts of one
sentence and, in the case of multi-word phrases, one word. Categories are created to
contain the search terms (one per stemgroup or multi-word phrase). Frequency
information in the textbase as a whole is requested for each word as it is entered as a search
term. During passage ranking, frequency information is requested for each search term in
each retrieved passage. Finally, the retrieved passages are requested for display to the
user.

2.6.3 Sample Scenario

Now that the system components have been described individually, a sample scenario will
be presented to illustrate how they work together to provide an intelligent online search
assistant. Since our current textbase concerns the domain of computer architecture, the
following example describes the interactions of the system and a user searching for
information on the alignment of word boundaries in memory. The contents of the
knowledge base which cause the following query reformulations will be describe in detail
in chapter 3.

The user might enter a query 'boundary AND word ANDNOT page', which indicates that he
wishes to retrieve passages containing information on word boundaries but not page
boundaries. Assume a target number of 15. Applied to this textbase, the original query
would retrieve only one passage, so the expert system would attempt to broaden the query.
The first step would be to replace the word types boundary and word with their
stemgroups. The resulting query would be 'Boundary AND Word ANDNOT page', where
the capitalized search terms indicate the whole stemgroup is included. Notice that page has
not been expanded to its stemgroup, as it is a negative, or excluded, concept. Four
passages would now be retrieved.

The next step would be to broaden the query by including synonym stemgroups for each of
the positive search terms, in turn. From the thesaurus it is found that Boundary has one
synonym, Limit, however there is no synonym for Word. The query now becomes
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'(Boundary OR Limit) AND Word ANDNOT page', which retrieves seven passages.
Relaxing the context around the AND operator to adjacent sentences while decreasing the
context around the ANDNOT operator to within 5 words increases the number of passages
retrieved to nine. To further broaden the query, the parent stemgroups for the positive
concepts are added. Block and Segment are added to the concept Boundary. The Word
concept remains unchanged, since Word has no parent in the thesaurus. The query
becomes '(Boundary OR Limit OR Block OR Segment) AND Word ANDNOT page', which
retrieves twelve passages. Twelve is within 20% of the fifteen passages requested, so the
reformulation stops. If the user requests to see the retrieved passages, the expert system
would rank the retrieved passages and present them to the user in decreasing rank-order.
This procedure is described in Section 3.5.

If the number of passages requested had been larger, for example, 35, the expert system
would have continued to broaden the query by adding more stemgroups from the
thesaurus, relaxing context, and changing the query structure. First, the positive siblings
would be added. Free, Frame, Fault, Fragment, and Scatter would be added to the
Boundary concept, although none is particularly useful for this query. Page is a sibling of
Boundary, but it would not be added because page already appears in the query. The
sibling stemgroups Align, Bit, and Byte would be added to the Word concept, increasing
the number of passages retrieved to nineteen.

Broadening would be continued by adding the child stemgroups. Align is a child of
Boundary, but it would not be added to that concept because it already appears in the Word
concept. WordSize and Word_Mark are added to the Word concept, but they have no
effect because they are multi-word phrases containing word, and this concept already
contains word on its own. Next, the context required between the stemgroups would be
relaxed to the maximum (same paragraph for positive concepts, adjacent words for negative
concepts). This would increase the number of passages retrieved to 26. Dropping the
negative part of the query, 'ANDNOT page', would be tried next, but it would have no effect
on the number of passages retrieved. Finally, the AND would be changed to OR. This
substitution would retrieve far too many passages, resulting in over 100 passages, so the
system would backtrack to the previous query.

The final query, '(Boundary OR Limit OR Block OR Segment OR Fault OR Fragment OR
Scatter) AND (Word OR Align OR Byte OR Bit OR Word_Size OR Word_Mark)', would
retrieve 26 passages. The user could choose to display these or to restart the system with a
different query in an attempt to retrieve more information.
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Chapter 3
Searching Knowledge Base

3.1 Overview

3.1.1 Knowledge Base Contents

Professional search intermediaries use three main types of knowledge - their knowledge of
how particular databases are constructed, knowledge about the domain being searched, and
knowledge of general search strategies - to form and improve queries. The expert system
handles all interactions with MICROARRAS, the text retrieval software used; the user will
need no specific knowledge of this system. Domain knowledge is all incorporated in the
hierarchically structured thesaurus. This chapter discusses the knowledge base of search
strategies that forms the core of the expert system.

The expert system performs three main functions:
1) it controls the operation of the system as a whole;
2) it reformulates the Boolean query based on previous search results;
3) it ranks the retrieved passages in decreasing order of estimated relevance for

presentation to the user.
To perform these functions the expert system contains a knowledge base of the search
process, search strategies, and passage ranking procedures.

3.1.2 Knowledge Base Design

In conventional programs, design is discussed in terms of data structures and algorithms.
The analogous discussion for an expert system covers working memory elements, the
knowledge base, and the inference algorithm. The working memory elements contain the
data available to the expert system describing the current state of affairs, whereas the
knowledge base is a collection of condition-action pairs, called rules, which execute based
on the current contents of working memory. The inference engine controls the choice of
which rule executes, orfires, if more than one has its conditions satisfied.

If more than one rule has its conditions satisfied, the conflict resolution strategy used in this
system will first choose the rule or rules with the largest number of conditions. These rules
are chosen because they handle more specific cases than rules with fewer conditions. If
there is still more than one candidate rule, the rule matched by the most recently created
working memory elements is chosen, leading to a type of depth-first execution.

Knowing the inference algorithm, the system execution can be explained in terms of the
rules in the knowledge base and the working memory elements that cause them to fire.
Section 3.2 describes the working memory elements, whereas sections 3.3, 3.4, and 3.5
describe the rule bases for system control, query reformulation, and passage ranking,
respectively. The complete rule base appears in Appendix F. This knowledge base is
drawn from the published literature on searching (see Section 1.3.5), search training
manuals, consultation with professional searchers, and experience with sample searches.
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3.2 Working Memory Elements

A description of the seven types of working memory elements, or elements, follows, with
an indication of how many instances of each type are created:

1) start: created to startup the system; one per user session
2) goal: the current high-level goal; one per user query
3) reform: contains information about the reformulation state; one per user query
4) query: contains information about the query as a whole; one per user query
5) concept: contains information about the concept group; one per concept
6) stem: contains information about the stemgroup; one per stemgroup
7) passage: contains information about the retrieved passage; one per passage

Several attributes contain indices into C structures which duplicate the information. Since
much of the reformulation work is accomplished by C routines under the direction of the
expert system, indices are passed to avoid exchanging large amounts of data between the
two modules. As they merely duplicate information, or store additional information merely
for efficiency reasons, the C structures will not be described in this dissertation.

start. No attributes.

Created upon system startup, it triggers the creation of a MICROARRAS process and a
goal element, then is removed.

goal. Attributes:
type: current goal, e.g. get query, or reformulate
subgoal: temporary goal during reformulation, e.g. addstemword
justright. target number entered by user
min: minimum number of passages acceptable, set to justright * 0.5
max: maximum number of passages acceptable, set to justright * 1.5
toofew: lower bound on success, set to justright * 0.8
max: upper bound on success, set to justright * 1.2

The first goal type is get query. This causes a rule to fire which receives a query from the
user and creates the query, concept, and stem elements. Each search term entered by the
user is assumed to represent a distinct concept and a concept and stem element is created for
each term.

query. Attributes:
status: indicates query's reformulation status, e.g. new, or reformulated, or final
version: index into C array for this query's parse tree
name: name of MICROARRAS's representation of this query
numpassages: the number of passages retrieved by this query
context: number representing the current context for the query
hi: the broadest context tried with this query so far
lo: the narrowest context tried with this query so far

Only one query is active at a given time. The user's query is parsed and information about
its structure is stored in a C array of parse trees. When the Boolean operators are changed
or removed, the current query's status is set to reformulated and a new parse tree is created.
A new query element is created with a new version and name. Changes to context or sets
of search terms do not require new query element, or new parse tree, merely an update to
the name field to reflect the new MICROARRAS category, or the context and hi or lo fields
to reflect the new context. The numpassages field is also updated to reflect the number of
passages retrieved at each step along the way.
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concept. Attributes:
status: indicates whether or not this concept is in current query, e.g. active
id: index into C array for this concept
sign: indicates whether concept is positive or negative, e.g. + or -
freq: number of occurrences of all stemgroups in the concept in the textbase
state: the last reformulation performed on the concept, e.g. addsynonyms

A concept element is created for each search term in the user's initial query. As the query is
reformulated, search terms may be added to the concept by the expert system. These are
stored in a C structure whose identity is stored in the id field. During query reformulation,
negative concepts may be dropped. In order to allow backtracking to an earlier query, the
concept's working memory element is not deleted in this case, but merely has its status
field set to inactive. The concept's sign is stored in the element to allow different
processing of positive and ntgative concepts. A concept's frequency is set to the sum of
the frequencies of all the search terms in the concept. Additionally, information about the
state of the reformulation process Is stored for each concept.

stem. Attributes:
id: index into C array for this stemgroup
concept: identifier for the concept containing this stemgroup
name: English name for the stemgroup, e.g. boundary
freq: number of occurrences of this stemgroups in the textbase
added: reformulation step which caused this stemgroup to be added to the query, e.g. 5
dist: distance of stem in thesaurus from original search term

Initially, a stem element is created for each concept in the user's query. This stem element
initially contains only the.user's search term. Reformulation may cause the other members
of the stemgroup to be added, which updates the freq field, and adds search terms to the C
structure for this stemgroup, but does not cause a new stem element to be created. Further
reformulation may add whole new stemgroups to the concepts, causing new stem elements
to be created. The dist field stores the distance of the stem from the original search term. It
contains 0 for the original term, 1 for the rest of the stemwords in this stemgroup, 2 for
synonyms, 3 for parents, 4 for siblings, and 5 for children.

reform. Attributes:
global: the type of reformulation required by the user's initial query, either broaden, or

narrow
local: the opposite direction of global, e.g. if global is broaden, local is narrow
next: the direction of the next reformulation, i.e. broaden or narrow
lastglobal: the last reformulation technique tried in the global direction
lastlocal: the last reformulation technique tried in the local direction
laststate: the last reformulation technique
step: counts the number of reformulations performed
dist: distance of new search terms from original (used when creating new stem

elements)

If the user's query needs reformulation, i.e. does not retrieve the target number of
passages, a reform element is created. The type of reformulation to be performed on the
user's query is stored in global. The sample query of 'boundary AND word ANDNOT page'
would retrieve one passage. If the target number was 15, global would be set to broaden,
local to narrow. Lastglobal, lastlocal, and laststate would all be set to original as no
reformulation has yet been done. Step is initialized to 0.
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Global and local remain unchanged during reformulation. Next indicates the direction of
the required reformulation. Lastglobal, lastlocal, and laststate are updated to keep track of
the progress of the reformulation process. Step is incremented by one for each
reformulation technique tried. Dist is set by calling C reformulation routines which return
the thesaurus distance information for the search terms proposed. For example, if the
above query were broadened by adding stemwords, it would result in the retrieval of four
passages. Because four passages are not enough to meet the user's target number, next
would be set to broaden. Since the reformulation added search terms that were in the same
stemgroup as the original search term, laststate would be set to addstemwords, and dist
would be set to 1. Because the previous reformulation was a broadening technique, and
the global direction is broaden, lastglobal would be set to addstemwords. Lastlocal would
remain unchanged, and step would be incremented to 1.

passage. A:tributes:
status: new, or ranked, or displayed
id: index into C array storing pointers to the reconstructed passages
wt: calculated weight of this passage

After the query reformulation stops, the passages corresponding to the final query are
retrieved, weighted, and displayed in decreasing order of weight. A passage element is
created for each passage, and information stored on it as indicated above.

3.3 System Control Rules

The system control rules are used to determine the execution path of the system. These
rules execute besed primarily on the contents of the start and goal working memory
elements. As these working memory elements are created and modified, they satisfy the
condition parts of different reformulation rules and cause them to fire. Figure 3.1 shows
the flow of control of the system, with rules shown as nodes in the graph. The elements
that cause them to fire, with their attributes in parentheses, label the arcs. As a query is
reformulated, control cycles between the Reformulate and WhatNext nodes. The
reformulation tactics appear in detail in Figure 3.2.

The system is started by the user creating the start element. This causes the rule Init to fire
which removes start and creates the goal element with the type field set to getquery.
GetQuery, SendQueryToMA, and ChecklnitialResults then fire in sequence by modifying
the type field of goal. These rules initialize the elements described in Section 3.2 and begin
the reformulation process described in Section 3.4. Reformulation continues until success
(retrieving between toomany and toofew passages) or failure (running out of reformulation
techniques) occurs. In the interactive version of the system, reformulation can also be
stopped by the user after any step. After Success or Failure fire, the user may display the
passages, in which case WeightPassages and DisplayPassage fire. If there are too many
passages, or too few, he may choose not to display the passages, but rather to begin with a
new query. This causes a collection of RemoveWME rules to fire, removing the working
memory elements, and the system restarts at GetQuery.

3.4 Query Reformulation Rules

3.4.1 Overview

Queries are reformulated based on the target number, the number of passages retrieved, and
the history of broadening and narrowing techniques already applied. The expert system
has a collection of reformulation tactics at its disposal. Marcia Bates [Bates, 1979] and
others have identified successful search tactics. However, no one has outlined an overall
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query reformulation strategy combining these tactics. The guiding principles for the expert
system's query reformulation knowledge base were: 1) each search term in the initial

query represents one concept on which the user does, or explicitly does not, wantinformation; 2) the user's initial search terms are the best indication of the user's areas of
interest; 3) some terms from the thesaurus may be helpful, but others will not; 4) to
broaden a concept using the thesaurus, parent sterngroups should be added first, followed
by siblings, then children 5) the expert system should never discard concepts in which the
user has indicated an interest.

Each search term in the initial query is expected to represent a unique concept. This needs
to be explained to the users of the system. Carolyn Crouch [Crouch, 19881 found that
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augmenting a query with thesaurus terms, rather than replacing the original search terms,
lead to improved results. With this in mind, concepts are expanded by adding thesaural
terms (ORing them with the terms already in the concept) rather than by replacing the terms
already present.

The importance of the initial search terms is reflected in the query reformulation strategy by
the decision to use context to broaden/narrow the query immediately after the terms have
been expanded to their stemgroups. Before adding new stemgroups from the thesaurus, I
felt that it was desirable to attempt to reach the target number using context alone.

The belief that some stemgroups from the thesaurus will be useful, while other will not, is
the basis for providing user filtering of the candidate thesaurus terms. The domain-
dependent search strategies identified by Philip Smith [Smith, 1989] involved the use of
domain knowledge to choose the appropriate terms from a thesaurus. In addition, Donna
Harman [Harman, 1988] showed that search results improved when thesaural terms were
filtered by the user. Based on these two studies, I decided to allow the users to select
which stemgroups to add from a set of thesaural candidates.

To expand a concept, he order in which the terms are added from the thesaurus is: parents,
then siblings, then children. Replacing a term with its parent to broaden a query is a
common practice, both by searchers [Bates, 1979; Salton, 1988], and in systems which
automatically reformulate queries [Vickery and Brooks, 1987; Chiaramella and Defude,
1987]. The rationale is that since parent terms represent broader concepts, adding the
parent term should broaden the scope of the query. Thus, parent terms are added first.
Siblings are added second since they represent related concepts, and children terms are
added third since they represent narrower concepts and seem less likely to broaden the
concept. While the expert system uses this ordering, the. reasoning is based on experience
with searching bibliographic databases using keywords. In full-text databases, I believe
that the reverse order may make more sense. Broadening a concept containing apple with
children terms, yielding 'apple OR mcintosh OR granny.smith', seems more likely to
retrieve relevant passages than broadening with the parent terms, yielding 'apple OR fruit'.
This tactic needs to be explored in future versions.

Finally, the expert system never discards positive concepts. If the user has indicated mor:e
than one concept in which he is interested, the expert system has no knowledge from which
to decide which concept is more important to the user. Thus, if expanding the query using
the thesaurus and context still yields too little information, the expert system does not drop
one of the concepts in an attempt to broaden. Rather, it ORs the concepts together to
retrieve the available information on all the concepts. In contrast, negative concepts are
dropped from a query if the other broadening techniques fail.

Figure 3.2 diagrams the flow of control among the reformulation techniques. The left side
of the Figure 3.2 diagrams the broadening techniques, the right side the narrowing
techniques. This figure is somewhat simplified since it does not show the use of context to
converge to the target number once queries have been found which bracket the target
number from above and below. The addition of search terms, including the handling of

multi-word phrases, is described in more detail in Section 3.4.2, context adjustment in
Section 3.4.3.

Flow of Control
After each reformulation, there are three possible outcomes, broaden, narrow, and success.
The node for each reformulation step contains an arc specifying the action taken for each of
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the possible results. Success at any reformulation node leads directly to the Success node.
While reformulation continues in the initial global direction, the nodes down that side of the
diagram are visited in turn.

The earlier techniques on both sides of the diagram represent those which are expected to
be most useful. Thus, the first reformulation in the opposite, or local, direction moves the
reformulation to the node at the top of the opposite side of the diagram. For example, if the
expert system has broadened a query five times in a row, it would be in the Add Positive
Siblings state. If too many passages are now retrieved, the expert system would attempt
narrowing by adding negative stemwords, the first state at the top of the narrowing side of
the diagram.

Reformulation never continues in the local direction farther than it preceded in the global
direction. Queries have already been formed which bracket the target number from below
and above, otherwise the system would not have tried both narrowing and broadening
techniques. Rather than using techniques which are considered less likely to produce good
results, such as adding more distant thesaurus terms or manipulating the query structure,
the expert system adjusts the context.

Continuing the above example, if the expert system then narrowed the query five times, it
would be in the Add Negative Siblings state. If the query required further narrowing, the
expert system would not go to the next state down, Add Negative Children, because it did
not get that far in the global broadening direction. If context adjustment does not result in
success, the expert system chooses the most recent query which resulted in too many
passages, rather than one which results in too few.

Broadening
Examining the figure in more detail, one can see that the first broadening technique used is
adding stemwords to positive concepts, followed by adding synonyms. Next, the expert
system increases context simultaneously in three ways: strict adjacency between terms in
multi-word phrases is relaxed to the component words appearing, in any order, within
three words of each other, the context around positive operators is loosened from the same
sentence to +/- one sentence; and the context around negative operators is tightened to +/-
seven words. Related terms from the hierarchical thesaurus are added next: words from
parent classes first, followed by siblings, and finally children. Context is then further
broadened such that terms from multi-word phrases are required to appear within the same
sentence, positive operators are evaluated with a context of the same paragraph, and
negative operators have their context decreased to +/- three words.

More drastic approaches are attempted if the previous techniques do not broaden the query
enough. These affect the Boolean operators in the query. First the positive operators are
loosened from AND to OR, while negative operators are tightened from OR to AND. If the
query still requires broadening the expert system removes the negative portions of the
query altogether.

Narrowing
Narrowing techniques are identical to broadening techniques but are applied to the opposite
parts of the query. Narrowing is accomplished by expanding terms in the negative concept
groups, tightening positive context, loosening negative context, tightening positive
operators, and loosening negative operators. The right side of Figure 3.2 shows the order
in which these techniques are applied.
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Stopping
Marcia Bates [Bates, 1979] stated that knowing when to stop a search is a difficult
problem. I partially side-step this problem by having the user explicitly state the number of
passages he wishes to retrieve. Since the target number he supplies is likely to be a rough
guess, a range of 20% is considered successful. A larger range may be desirable, but since
the user is able to stop the reformulation process himself, the size of the range is not
important. Left on its own, the expert system stops the reformulation process when it
retrieves within 20% of the target number, or it has run out of techniques to try. The rules
to implement stopping are described in more detail in Section 3.4.5.

3.4.2 Expanding Search Terms

Techniques
The expert system has several ways of expanding the search terms to reformulate the
query. Initially, each user search term is assumed to represent a unique concept which is
identified as positive or negative when the query is parsed. To broaden a query, the
positive concepts are expanded, one at a time, while the negative concepts are expanded to
narrow a query. Search terms are added in order of the closeness of their relationship to
the original term; therefore stemwords are added before synonyms, which are added before
search terms from outside the thesaurus class. Parent stemgroups are added next, because
they represent broader concepts and are therefore most likely to broaden the concept.
Sibling stemgroups are added next, since they represent related concepts. Child
stemgroups are added last, since they represent more specific, narrower, concepts and are
the least likely to broaden the scope of the query.

Implementation
The order of fuing of the rules for the above techniques is controlled by the goal and
reform elements. For each technique, there is a set of four rules which implement it: two
to recognize that the technique is the proper one to apply next, a third to broaden the query
by applying the technique to positive concepts, and a fourth to narrow the query by
applying the same technique to negative concepts.

The first initialization rule fires while the reformulations are continuing in the original, or
global, direction. This is the case where control is flowing down one side of Figure 3.2.

The second initialization rule fires when upper and lower bounds on the target number have
been established and the system is reformulating in the opposite, local, direction to
converge to the target number. Reformulation has progressed too far in the original
direction, resulting in either too much broadening or too much narrowing, and now the
complementary techniques are being applied to achieve success. This is the case where
reformulation has flowed a certain distance down the global side of Figure 3.2 and
reformulation is now taking place in the opposite direction. This rule checks that the local
reformulations have not used more techniques than were used in the global direction. If
this has occurred, context adjustment is the only technique used.

C Routines
CGetFirstSibling( conceptid, stemid, stemname, distance, frequency ): Boolean
- This routine gets the first sibling stemgroup for a given concept. It returns true if
-- there is a sibling stemgroup, false otherwise.

call thesaurus routines to get all the siblings for conceptid;
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if there was a sibling
fill global variable with stemids for all siblings;
fill stemid, stemname, distance, and frequency parameters for first
sibling,
return( true);

else return( false );

CGetNextSibling( conceptid, stemid, stemname, distance, frequency ): Boolean
- This routine gets the next sibling stemgroup for a given concept. It returns true if
- there is a sibling stemgroup, false otherwise.
get next sibling from global variable filled by CGetFirstSibling,
if there was another sibling

fill stemid, stemname, distance, and frequency parameters for the next sibling;
return( true );

else return( false);

Example Rules to Add Siblings
rule AddSiblingslnitl:
-- This rule fires when reformulation is continuing in the global direction, and the
-- last global reformulation technique tried was adding parent stems.
if there is a goal whose type is reformulate, and

a reform such that the next = global, lastglobal = addparents, lastlocal = original
then

modify goal.type to be addsiblings;
modify reform such that lastglobal = addsiblings, laststate = addsiblings, step =
step + 1, dist = 5;

endrule

rule AddSiblingsInit2:
- This rule fires when reformulation is continuing in the local direction, and the last
-- local reformulation technique tried was adding parent stems. There is a check
-- that the last global reformulation was not the last local reformulation ( i.e.
-- reformulation got at least this far in the global direction). There is also a check
-- that not only context adjustments are being used to approach the target number.
if there is a goal whose type is reformulate, and

a reform such that the next = local, lastlocal = addparents, lastglobal <> lastlocal,
laststate o adjustcontext

then
modify goal.type to be addsiblings;
modify reform such that lastlocal = addsiblings, laststate = addsiblings, step =
step + 1, dist = 5;

endrule

rule AddPositiveSiblings:
-- This rule adds sibling stems to positive concepts (i.e. it broadens the query).
-- This rule fires once for each positive concept in the query. It expands the
-- concepts in increasing order of frequency. It triggers a rule to remove high
-- frequency stems by setting the goal's subgoal field to freqfilter.
if there is a goal whose type is addsiblings, and whose subgoal is null, and

a reform such that next is broaden, and
a positive concept whose last reformulation was addparents, and
no positive concept with lower frequency than the above concept group, and
a current query
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then
call CGetFirstSibling to get the first sibling stem for the concept group;
while ( there are siblings to add)

make a stem element for the new sibling;
call CGetNextSibling to get the next sibling stem;

modify goal.subgoal to be freqfilter,
modify concept.state to be addsiblings;

endrule

rule AddNegativeSiblings:
-- This rule adds sibling stems to negative concepts (i.e. it narrows the query).
- This rule fires once for each negative concept in the query. It expands the
- concepts in increasing order of frequency.
if there is a goal whose type is addsiblings, and whose subgoal is null, and

a reform such that next is narrow, and
a negative concept whose last reformulation was addparents, and
no negative concept with lower frequency than the above concept group, and
a current query

then
same actions as rule AddPositiveSiblings

endrule

Adding Stemgroups
The rules which add stemgroups to concepts, such as AddPositiveSibiings, merely identify
a set of candidate stemigroups for a given concept. There is a collection of rules which filter
these candidates and add the survivors one at a time, evaluating their effect on the query.
This process is primarily controlled by the subgoal field of the goal element.

First, a rule fires to remove the high frequency candidates, those occurring more than 250
times in the textbase, from the set. This rule is triggered when the subgoal field of the
goal element containsfreqifter. Normally, thesauri do not contain high frequency terms,
but they appear in this thesaurus as parents of multi-word phrases and need to be filtered
out by the expert system. Then, the subgoal field is set to duplicatefliter and another rule
fires which removes candidates stemgroups that already appear in the query.

Duplicate candidates are kept if their relationship to a user's search term is closer than that
of the original instantiation of the stemgroup. Consider the query 'boundary ANDNOT
page'. When the stemgroup Page is a candidate for inclusion as a parent stemgroup of
Boundary, it is eliminated because Page is already in the query as an original term. This
prevents the query from becoming '(Boundary OR Page) ANDNOT Page' which would
cancel out the effect of the entire negative part of the query. However, if Segment had been
added to Page as a sibling, and later reformulations suggested Segment as a parent of
Boundary, this addition would be made since parents have a closer relationship than
siblings. The query would become '(Boundary OR Segment) ANDNOT (Page OR
Segment)', which would nullify the effect of adding Segment to Page. Since Segment is
closer to Boundary than Page, it is not wanted in the negative part of the query.

Finally, rules fire to add the stemgroups thit pass through the previous two filters to the
concept one at a time. As each is added, the resulting number of passages is determined.
(There is also an interactive version of the stem addition rule which asks the user whether
or not to include each stem to the given concept.) If the effects of adding the stemgroup are
too drastic, the system backtracks by removing the stemgroup. If the result is success, the
reformulation process is stopped. Otherwise, the change is kept and the reformulation
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continues. When all of the stemgroups for a given concept have been processed, the expert
system processes the next concept. When all concepts have been processed, the expert
system moves on to the next reformulation technique. This process is diagrammed in
Figure 3.3.

3.4.3 Adjusting Context

The expert system manipulates four different contexts; it adjusts the distance between
words in positive and negative multi-word phrases as well as the distance between positive
and negative search concepts. Initially, the positive and negative phrase contexts are set to
be one word, with the requirement that words appear in the same order as in the phrase.

goal typeadsiblings, subgoal=ll
conceptl sign=+, laststatze=addpaimnts
-ncept sign=+, laststae=addparents, freq<conceptl.freq

Other A v
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Figure 3.3 Stemgroup Addition Execution Cycle

In other words, the exact phrase is searched for. The default context used for positive and
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negative concepts is set to the same sentence. Thus, all positive concepts must appear
within the same sentence, and that sentence must not include any occurrences of a negative
concept. This context was chosen because it is intermediate between the contextual
extremes of adjacency and occurrences within the same paragraph, and it is a natural
contextual unit.

Whereas there were several sources of information to draw from to determine the order in
which to apply the search term expansion techniques, there was less information available
on the use of context to reformulate queries. Contextual searching is not available on
standard bibliographic systems, and full-text systems usually supply operators for
adjacency, same sentence, same paragraph and same document, only. There is no
established practice on when to adjust context rather than expand search terms.

I chose to adjust context in four specific places in the expert system: after adding all
stemgroups from the same thesaurus class, but before adding any stemgroups from related
thesaurus classes; after adding all related stemgroups from the thesaurus, but before
changing the Boolean operators; after changing the Boolean operators but before declaring
failure; and after the local reformulations have progressed as far through the search
techniques as was used in the original reformulation direction. These places were chosen
because it seems desirable to try adjusting context, which is an effective reformulation
technique, before moving on to a new group of reformulation techniques which are less
promising than the ones already tried.

The first context adjustment occurs after synonyms have been added. If the system is
attempting to broaden the query, the context is increased. Conversely, if the system is
attempting to narrow the query, the context is decreased. Context is further increased (or
decreased) after the children stems have been added. The final increase (or decrease)
occurs just before failure is reached (see Figure 3.2). The contexts used, with 1 being the
narrrowest and 7 the broadest, are:

1) positive phrases: adjacent words, in correct order
positive concepts: adjacent words
negative phrases: within 5 words, any order
negative concepts: within same paragraph

2) positive phrases: adjacent words, in correct order
positive concepts: within 3 words
negative phrases: within 3 words, any order
negative concepts: within 3 sentences

3) positive phrases: adjacent words, in correct order
positive concepts: within 5 words
negative phrases: adjacent words, any order
negative concepts: within adjacent sentences

4) positive phrases: adjacent words, in correct order
positive concepts: within same sentence
negative phrases: adjacent words, in correct order
negative concepts: within same sentence
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5) positive phrases: adjacent words, in any order
positive concepts: within adjacent sentences
negative phrases: adjacent words, in correct order
negative concepts: within 5 words

6) positive phrases: within 3 words, in any order
positive concepts: within 3 sentences
negative phrases: adjacent words, in correct order
negative concepts: within 3 words

7) positive phrases: within 5 words, in any order
positive concepts: within same paragraph
negative phrases: adjacent words, in correct order
negative concepts: adjacent words, any order

Notice that increasing context causes the positive contexts to be broadened while narrowing
the negative contexts. The default context appears as number 4.

Besides occurring in the sequence of reformulation techniques, context can be adjusted
after any step in the case that local reformulations have progressed as far as the global ones.
In this case, the target number has been bracketed, but no query has been close enough to
be declared successful. This situation is recognized and context is used to attempt to get
closer to the target number, rather than continuing with other, more noisy, techniques. If
the context cannot be adjusted to meet the criteria for success, the query which is too broad
is chosen over that which is too narrow. Professional searchers tend to present the user
with slightly too much information, rather than too little.

3.4.4 Changing Boolean Operators.

The final variable the expert system can manipulate to reformulate the user's query is the
use of Boolean operators. The query can be broadened in two different ways: first, the
AND operators can be switched to OR operators; second, the negative parts of the query can
be dropped altogether. Similarly, the query can be narrowed by replacing OR operators
with ANDs. The expert system does not have enough information about the user's
information needs to decide which positive parts of the query to drop, so this technique is
not employed to narrow queries.

Manipulating query structure in this way causes major changes to the user's original query.
These techniques are only tried after all close relatives from the thesaurus have been added,
and context has been broadened twice. It is not likely that the new query will find passages
that the user will find highly relevant, but the goal is to find somewhat relevant passages
that users can read in order to reformulate their own queries and try again. It is also
possible that there are no passages covering the concepts the user seeks (or far too many),
in which case no amount of reformulation could be successful Showing the final retrieval
set, even if it contains no relevant passages at all, indicates to the user this mismatch
between query and textbase.

3.4.5 Decision Rules

There are a collection of rules to determine the number of passages retrieved by the query
sent to MICROARRAS. CheckInitialResults fires only on the user's original query when
the system runs without user direction. InteractiveChecklnitialResults fires on the user's
original query if the user is to be asked whether or not he wishes to continue the

43



reformulation. BroadenWhatNext and NarrowWhatNext fire on reformulated queries after
a broadening and narrowing step, respectively. These then cause the rules WhatNext or
InteractiveWhatNext to fire. I will show the non-interactive versions of
CheckInitialResults, BroadenWhatNext, and WhatNext as examples of this family of rules.
The rules will be preceded by a description of the C routines they use.

C Routines
CGetNumPassages( query)
- Returns the number of passages retrieved by a query.
numpassages = MICROARRAS frequency command( query)
return( numpassages )
CWhatNext( numpassages, toofew, toomany)
-- Returns a symbol representing what the next direction of the reformulation
should be.
if (numpassages < toofew) return( broaden)

if (numpassages > toomany) return( narrow)
else return ( success )

CReportDecision( version, numpassages, results)
-- Displays a message to the user informing them of the system's decision on what
to do next.
print( Query version retrieved numpassages passages. Decision: results.)

Sample Decision Rules
rule ChecklnitialResults:
--This rule fires to determine the number of passages retrieved by the user's original
-- query. InteractiveCheckInitialResults is identical except that it calls
-- CContinueOrNo to ask the user whether or not to continue reformulating the
-- original query or start over with a new one.
if there is a goal whose type is checkresults and

a query which has been sent to MICROARRAS and
no interactive element (indicating that the expert system is running alone) and
no reform element (indicating that the query is the user's original one)

then
call CGetNumpassages to determine the number of passages retrieved (store in

query.numpassages)
call CWhatNext to determine what the next step should be (store in results)
call CReportDecision to report back to the user
if the results were success

modify goal.type to be success, query.status to be final
else

modify goal.type to be reformulate
modify query.status to be evaluated
make a reform element with step = 1, global = results, next = results, dist =0,

lastglobal = original, lastlocal =original, laststate = original
endrule

rule BroadenWhatNext:
-- This rule fires to determine the number of passages retrieved after a broaden
-- step. It checks that all positive concepts have been reformulated by the previous
-- reformulation technique, and that any candidate stems have been added or
-- discarded. NarrowWhatNext differs from BroadenWhat Next in that it checks
-- for unprocessed negative concepts rather than positive concepts.
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if the current goal is not to reformulate, and its subgoal is null and
the last reformulation was broadening and
all positive concepts have been processed for the previous reformulation and
all candidate stems have been processed for the previous reformulation

then
modify goal.subgoal to be whatnext

endrule

rule WhatNext:
--This rule fires to decide what to do next based on the number of passages
-- retrieved by a reformulated query. The query's numpassages has already been
- determined by the reformulation step (it is needed then to decide whether or not
-- to backtrack). InteractiveWhatNext is identical except that it calls
-- CContinueOrNo to ask the user whether or not to continue reformulating the
-- original query or start over with a new one.
if there is a goal whose subgoal is whatnext and

a query whose number of passages has been determined and
a reform element (indicating that the query is not the user's original one) and
no interactive element (indicating that the expert system is running alone)

then
call CWhatNext to determine what the next step should be (store in results)
call CReportDecision to report back to the user
if the results were success

modify goal.type to be success, query.status to be final
else

modify goal.type to be reformulate, goal.subgoal to be null
modify reform.step to be step + 1, reform.next to be results

endrule

3.5 Passage Ranking Rules

The dialogue between the expert system and MICROARRAS normally produces a set of
passages to be displayed to the user. The last task performed by the expert system is to
rank order those passages in terms of their probable interest to the user. To do this, it
performs an elementary content analysis on each passage and computes a weight
representing probable interest.

Ranking algorithms for document retrieval systems have been extensively studied. There
has been less work done on ranking for passage retrieval systems. The FAIR system
[Chang and Chow, 1987] performs a simple ranking based on the distance between word
pairs, the number of search terms represented and the number of occurrences of the terms.
The ranking algorithm used by the expert system considers the following factors: the
number of different concepts represented in the passage; the number of different word
types for each concept; the relationship of the concept's word types to the user's original
search terms; the number of occurrences for each word type from the search expression
appearing in the passage; and the contextual distance between search terms. The passages
are then ranked according to their respective index values and presented to the user in order
of decreasing rank.

3.5.1 Calculating Passage Weights

The weight Wpq of passage p for query q, 0 < Wpq <= 1, is a function of the weight Cip
of each query concept i in p, the relationship between the concepts (determined by the
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parse tree), and the contextual closeness between the concepts. The concept weights are
combined by applying the rules for fuzzy logic [Zadeh, 1965] to the Boolean structure of
the query. Additionally, a closeness factor is associated with each of the AND and ANDNOT
operators. The closeness factor for the AND operator is set to one of three values (1.0 for
same sentence, 0.9 for adjacent sentences, 0.8 for same paragraph). The closer two
positive concepts appear in the passage, the higher weight that passage receives.
Complementary closeness values are used for the ANDNOT operator (0.8 for same
sentence, 0.9 for adjacent sentences, 1.0 for same paragraph).

Wp(Ci AND Cj) = min(Cip, Cjp) * PositiveCloseness (1)
Wp(Ci OR C = max(Cip, Cjp) (2)
Wp(NOT Cj) = (1 - Cjp) (3)

From (1) and (3)
Wp(Ci ANDNOT Cj) = min(Cip, 1 - Cjp) * NegativeCloseness (4)

The concept weights and closeness factors fall in the range [0,1], therefore the passage
weights also fall in the range [0,1].

3.5.2 Calculating Concept Weights

The weight of concept i in passage p, Cip, is a function of the weight of each concept term
T in query q, denoted Tjq for search term j, and the weight of each concept term in the
passage, denoted Tjp for search term j, and the number of search terms for the concept.
The weight of a search term in the passage is multiplied by the weight of that search term in
the query. Thus, the highest weight search terms are those which are important in the
query as well as the passage. The weights for all the concept's search terms are summed
together and normalized by the number of search terms for the concept, N.

N

Cip = 1/N Tjq * Tjp where term j is in concept i (5)
j=1

The term weights fall in the range [0,1], therefore, the concept weights also fall in the
range [0,1].

3.5.3 Calculating Term Weights

Two different term weights, T, are calculated: the weight of the search term i in query q,
Tiq, and the weight of the search term i in passage p, Tip.

Query Term Weights
The weight of the search term i in query q, Tiq, reflects the relationship of the search term
to the user's original term. The relationships, from closest to most remote, are: same
word, stemgroup, synonym, parent, sibling, child. These distances reflect the order in
which search terms are added to the concepts, which in turn reflects confidence in the
closeness of the relation of the search term to the original term.

Tiq = 1.0 (word), 0.9 (stemgroup), 0.8 (synonym), 0.6 (parent),
0.5 (sibling), 0.4 (child) (6)

The query term weights fall in the range [0,1] as required, with the original word receiving
a weight of 1.0. Terms added by the expert system receive weights which decrease by 0.1
for every step away from the original term, except for the step from synonym to parent
terms. This step decreases the term weight by 0.2, reflecting the large decrease in
confidence which occurs when terms are added from outside the thesaurus class.

46



Passage Term Weights
The weight of the search term i in passage p, Tip, reflects the frequency of the search term
in the passage, fip, and the frequency of the search term in the textbase, fit. Jung Soon
Ro [Ro, 1988] evaluated several full-text ranking algorithms and concluded that those
based on relative document frequency provided the best performance. Thus, I chose
relative frequency for the term passage weights.

Tip = fip / fit (7)
The term passage weights fall in the range [0,1], as required.

3.5.4 Example

As an example of the passage ranking algorithm, the calculation of the weight of a passage
retrieved by the sample query of Section 2.6.3 will be presented here. The final version of
the query was '(Boundary OR Limit) AND Word ANDNOT page' with the positive context
relaxed to adjacent sentences and the negative context restricted to within 5 words. One of
the twelve passages retrieved by this query follows. The query term occurrences within the
passage are underlined.

Need for alignment. Memory word size affects the efficiency of fetches and
stores of information units. If the lengths and locations of such aggregates can be
made commensurate with the physical memory word boundaries, such fields are
said to be aligned, and they can be handled with far greater efficiency than if
unaligned. Figure 2-29 illustrates that aligned data require fewer memory accesses
than unaligned data.

Search Terms
The search terms for the query are:

Concept 1: boundary, boundaries, limit, limits
Concept 2: word, words
Concept 3: page

Passage Term Weights
From Section 3.5.3, the formula for passage term weights is:

Ti,p = frequency of term i in passage p/frequency of term i in textbase
Therefore,

Tboundariesp = 1/9 = 0 .1111
Tword,p = 2/272 = 0.0074

Since the other terms do not appear in the passage, they have passage term weights of 0.

Query Term Weights
As explained in Section 3.5.3, the query term weights are assigned according to the
relationship of the term to the user's original search term. Therefore,

Tboundary,q = Tword, q = Tpageq = 1.0 (original search term)
Tboundaries,q = Twords,q = 0.9 (same stemgroup)
Tlimit,q = Tlimits,q = 0.8 (synonym)
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Concept Weights

The formula for calculating concept weights, from Section 3.5.2, is:

N

Ci,p = 1/N Tjq * Tjp where term j is in concept i
j--1

Therefore,
Cl,p = 1/4 ( (Tboundary,q * Tboundaryp) + (Tboundaries,q * Tboundariesp) +

(Tlimit,q * Tiimitp) + (Tlimits,q * Tlimits,p) )
= 1/4 ( (1.0 * 0) + (0.9 * 0.1111) + (0.8 * 0) + (0.8 * 0))
= 0.025

C2,p 1/2 ( (Twordq * Twordp) + (Twords,q * Twordsp))
= 1/2 ( (1.0 * 0.0074) + (0.9 * 0))
= 0.0037

C3,p = 1/1 (CTpage,q * Tpagep))
= 1.0 0
=0

Passage Weight
The passage weight is calculated from the concept weights as describ,.d in Section 3.5.1.
The weight for the passage is a factor of the closeness of the concepts. In this case, there
are two possible values for closeness; word appears in the same sentence as boundary as
well as in an adjacent sentence. Where there is more than one possible closeness factor,
the maximum valid closeness value is used. The parse tree structure is used to combine the
concept weights. Since ANDNOT has the highest precedence, the weight for the passage is:

Wp(Cl AND C2 ANDNOT C3)
= Wp(CI AND (C2 ANDNOT C3))
= min (Cl,p, Wp(C2 ANDNOT C3)) * PositiveCloseness
= min (Ci,p, (min (C2,p, 1 - C3,p) * NegativeCloseness)) * PositiveCloseness
= min (0.025, (min (0.0037, 1 - 0) * 1.0)) * 1.0
= min (0.025, 0.0037) * 1.0
= 0.0037

The weight of this passage for the reformulated query is 0.0037. This is the weight of the
lowest weighted positive concept. If the positive concepts had not occurred in the same
sentence, the passage weight would have been reduced by a closeness factor. The weight
of the other 11 retrieved passages would be similarly calculated, and the passages would be
presented to the user in decreasing weight order. This passage would have one of the
highest weights since its weight was not reduced by a closeness factor. Additionally, the
terms appearing in the passage had high query term weights as they were closely related to
the user's original search terms.
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Chapter 4
Evaluation

4.1 Introduction

Evaluating an interactive system is difficult. Jean Tague [Tague and Schultz, 1988] has
defined a framework for evaluating information retrieval systems. She identified three ways
to measure the information retrieval system: informativeness, time, and user friendliness.
Informativeness is measured by retrieval output (search effectiveness) and retrieval order
(ranking). The search efficiency of the system is related to Tague's time factor. Finally,
the user friendliness of the system can be evaluated by a post-search questionnaire.

My primary goal is to demonstrate that using an expert system to reformulate queries can
improve search performance for novice searchers. Ideally, both their effectiveness and
efficiency would be improved. The second, less important, goal is to show that the expert
system can rank the retrieved passages in decreasing order of relevance.

To evaluate the expert system, subjects attempted to find relevant passages in response to
high-level questions. They queried MICROARRAS with three interfaces with different
capabilities: an interface whose only function was to accept contextual Boolean queries and
display search results; a similar interface which also allowed the user to explore the online
thesaurus; and a third which incorporated the searching expert system. Each subject's
search performance with the three interfaces was monitored and compared.

4.1.1 Hypotheses

Hypothesis 1: The expert system improves the search effectiveness for a novice searcher.
Hypothesis 2: The expert system improves the search efficiency for a novice searcher.
Hypothesis 3: The expert system can rank the passages retrieved by the search in
decreasing order of relevance.

The effectiveness of the retrieval output is evaluated by looking at recall (the number of
relevant items found / the total number of relevant items in the database) and precision (the
number of relevant items retrieved / the number of items retrieved). Two estimates of the
number of relevant items retrieved are examined: the number of passages the users mark as
relevant and the number of passages retrieved from the set of passages deemed relevant by
the experimenter.

The efficiency of the systems is measured by the number of Boolean queries the subjects
entered for each of several high-level questions, and by the amount of time they spent
searching for relevant passages for each question.

The ranking algorithm was evaluated by comparing the order of appearance of relevant
passages after they have been ranked with a random order of appearance. Although there is
a natural ordering of the passages in the test textbase, i.e. the order of appearance in the
book, this is not the case for textbases containing many different, independent documents.
Thus, random appearance order was chosen as the control to simulate the expected results
when retrieving from a less structured textbase.
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These measures, reported separately but considered together, give an overview of the

system's performance.

4.2 Method

4.2.1 Subjects

Twelve computer science graduate students participated as subjects in the study. All
subjects were knowledgeable in the use of computers, but unfamiliar with doing online
searching. Thus, they were representative of the anticipated users of future information
retrieval systems for which this system is a prototype. They might be expected to be better
than average searchers since programming ability is highly correlated with searching ability
[Borgman,1987]. If the expert system can improve the searching for this subject pool, it
might improve performance even more for a user pool with less searching aptitude.

4.2.2 Apparatus

Information Retrieval Systems
The subjects queried the information retrieval system using three different interfaces. The
interfaces were similar in their look and feel, but differed in the functions they provided.
The subject sessions were: the user querying MICROARRAS on their own; the user
querying MICROARRAS while having access to the online thesaurus; and the user
querying MICROARRAS with the help of the expert system.

The user-alone configuration consisted of a Sun 3 running MICROARRAS and a
rudimentary expert system. This expert system performed only the system control
function, and did no query reformulation or ranking of retrieved passages. The user was
prompted for a contextual Boolean query, this query was sent to MICROARRAS, and the
number of passages retrieved was reported back to the user. The user could display the
passages retrieved, if there were fewer than 25, or try another query.

The syntax of the query language, in Backus-Naur form, follows. Non-terminals appear
inside angle brackets, and terminals appear in bold.

<query> ::= <term> [<operator> [optional-context] <term>]*
<term> ::= <word> I <stemgroup>
<word> :: = any lower case string
<stemgroup> ::= *<word>
<operator> ::= and I or I andnot
<optional-context> ::= [<context>]
<context> ::= number to number <unit> I nextword I sentence I paragraph'
<unit> ::= words I sentences I paragraphs

The user-thesaurus version consisted of a Sun 3 with one window running
MICROARRAS, as in the user-alone system, and a second window running a thesaurus
access function. In the thesaurus window, the user had access to all the thesaurus
information available to the expert system. He could find out the stemname for a specific
word's stemgroup. For any stemname, he could ask for the stemnames of the
corresponding synonym, parent, sibling, or child stemgroups. These stemnames could be
used in the user's query to MICROARRAS.
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The following changes to the query syntax were made in order to allow the user to enter
stemnames.

<stemgroup>::= *<word> I <stemname>
<stemname> ::= any upper case string

In the user-expert system version, the user did not have access to the online thesaurus.
Context and the addition of stemgroups were controlled by the expert system. Thus, the
user entered a Boolean query and a target number of passages, and the expert system
reformulated the user's query to attempt to get close to the target number. The user was
prompted to filter search terms found in the thesaurus and to continue or abandon the
current reformulation. For a fuller description of the user interface, see Section 2.5.

To keep the response time approximately the same as for the other two configurations, it
was necessary to run MICROARRAS remotely on the Sun 4 file server containing the
textbase. The user worked with one window on a Sun 3 which ran the fun version of the
query reformulation expert system. The expert system communicated with
MICROARRAS over the network. This setup was approximately twice as fast as when
MICROARRAS was run on the user's Sun 3. This speed up was necessary, not because
the expert system code itself was slow, but rather because the expert system tended to form
very long queries involving many MICROARRAS categories and MICROARRAS slows
down linearly with the number of search terms in a query.

The changes to the syntax of the query language follows. Note that the user is able to enter
a multi-word phrase as a search term.

<query> ::= <term> [<operator> <term>]*
<term>::= <word>[_<word>]*

Questions
Three sets of five questions were devised. Each set contained one training question and
four questions on which subjects were monitored. The questions covered material ranging
over the whole textbase. They were designed to be specific enough to have on the order of
ten relevant passages yet not so specific as to be answerable by a single passage. An
estimate of the number of relevant passages in the textbase appears in parentheses after each
question. Section 4.2.4 describes how these estimates were calculated.

WM SetA
Practice:

What are some sources of error in floating point arithmetic?
Monitored:

1) How is computer architecture distinguished from the other computer design
domains? (16)

2) What are some upward pressures on the level of a machine language? (16)
3) Fixed length multiplication produces a double length result. How have different

machines handled this? (14)
4) How are interrupts handled? Do not consider techniques to disable them. (23)

Q=S t LB
Practice:

I/O devices have moving parts. What is the effect of this motion on the architecture of
computers?

Monitored:
1) What are some design principles that lead to clean architectures? Do not consider

the economic advantages of a quality design. (14)
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2) What techniques have been used to reduce bit traffic? (10)
3) How are control structures implemented? (13)
4) What role does buffering play in I/O transfers? (22)

Practice:
Fragmentation of memory is one problem of using a segmentation scheme. How is
paging used to fix this?

Monitored:
1) Discuss the two fundamentally different ways to formally specify an architecture.

(19)
2) What are the effects of having two zeros, as in the sign magnitude representation of

fixed point numbers? (7)
3) What is done to save state upon a procedure call? (15)
4) Besides I/O, where is concurrency practiced in the implementation? (16)

Handouts
The subjects were given three types of handouts. For each version of the retrieval system,
they received a description of the appropriate query language including its syntax and some
examples. They also received one of the above question sets to answered using the
system. When they finished the experiment, they were asked to fill out a questionnaire
about the different versions they worked with. A copy of all the handouts appears in
Appendix III.

4.2.3 Procedure

Subjects received a briefing on the purpose of the experiment and t e type of tasks they
would be asked to perform. They were told that they would be querying three versions of
the same system. They were asked to try to find on the order of ten relevant passages from
the textbase in response to the questions they would be given. They were informed that
they might not always be able to find that many, and they were allowed to stop working on
a query whenever they were satisfied that they had found as much as they could.

The target number of ten was chosen because it was large enough to require a high recall
search, yet small enough that the users would not become tired reading passages. For
similar reasons, Carlo Vemimb [Vemimb, 1977] also used a target number of ten when
developing an automatic query reformulation system for document retrieval.

Each subject worked with each of the three systems, in turn. This was done to compensate
for the large individual differences found in searching ability [Borgman, 1987]. The order
of presentation of the three systems was counterbalanced among subjects.

The subjects were coached on query formulation during the training session for the first
system. The tools available for query reformulation (i.e. context, search terms, operators)
were explained before the subjects used either the user-alone or user-thesaurus version.
The query language syntax and system capabilities were explained. The subjects practiced
query formulation and reformulation using the training question from set A with their first
system. They then queried on the four remaining questions from set A while data
describing their session was collected. The subjects then trained and searched with the
remaining two systems, in turn, using question set B with their second system and
question set C with their third. Between each session they took a short break. When they
had completed all three sessions, they were asked to fill out the questionnaire stating their
preferences and opinions.
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4.2.4 Data Collection

Raw Data
Data was collected in a trace file while the subjects worked with the system. Each
communication from the subject to the retrieval system, and vice versa, was stored with a
time stamp. Thus, timing information was collected along with the history of queries
entered by the subject and the search results. When the subject chose to display the
retrieved passages, those passages and the subject's relevance judgement of them were also
stored.

Data Calculations
Several parameters were chosen from the trace file to represent each subject's sessions.
Measurements were taken on time, number of queries, and number of relevant passages.
Before the variables to be compared are described, I will provide a few definitions.

Definitions
A unique query was any error-free query entered by a subject. If a subject entered a query
which contained a typographic or logical error, and he indicated that he noticed the error by
aborting the search and re-entering a corrected version, then the erroneous query was not
considered a unique query. However, if the subject gave no indication that he was aware
of the error, but instead moved on to a different query altogether, then the erroneous query
was considered unique.

The relevance weight of a passage is the relevance number assigned to the passage by the
subject. A very relevant (user) passage is one assigned a relevance weight of two. A
somewhat relevant (user) passage has a relevance weight of one. A relevant passage (user)
is one that is either very relevant or somewhat relevant, as judged by the user. An
irrelevant passage (user) is a passage given a relevance number of zero.

It is necessary to have an estimate of the total number of relevant passages available for
each question in order to calculate recall. This estimate was calculated by considering, for
each question, the set of all passages judged relevant by any subject. This absolute
retrieval set contained all very relevant (user) passages minus those I judged irrelevant. In
some cases the subjects did not truly understand the question, or the retrieved passages,
and marked false drops or marginally relevant passages as very relevant. The tendency to
mark marginally relevant passages as very relevant may also be because the subjects were
not aware of the presence of much better passages and incorrectly thought that they had
retrieved the best passages available. Thus, relevant passages are those contained in the
absolute retrieval set.

A successful retrieval set is a retrieval set containing at least five relevant passages. Since
the subjects were attempting to find ten relevant passages, a successful retrieval set contains
at least half the number they were looking for. Generally, the size of a successful retrieval
set would vary from question to question, with the number of relevant passages available
and the user's information needs. However, the questions chosen for this experiment all
had between seven and twenty-three relevant passages in the textbase, allowing for a
constant target number of ten and a successful retrieval set size of five.

The final retrieval set was difficult to identify. Initially, I intended to choose the final set
of passages displayed as the final retrieval set. However, on several occasions the subject
would have a good retrieval set and try "one last query" which was quite different and
retrieved little of relevance. In this case, he would stop searching because he had already
achieved satisfactory results. Thus, I choose the last successful retrieval set as the final
retrieval set. If a subject never retrieved a successful retrieval set for a given question, the
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retrieval set with the highest number of relevant passages, as judged by the subject, was
chosen.

Yaiale
Total time per question is calculated from the entry of the subject's first query for the
question until after the display, or decision not to display, of the final set of retrieved
passages.

Number of queries per question is determined by counting the number of unique queries
the subject entered for a given question.

Number of relevant passages (user) found per question is determined by counting the
number of user indicated relevant passages in the final retrieval set for the question.

User precision is calculated for the final retrieval set using the standard formula of:
number of relevant passages (user) retrieved / number of passages retrieved

Number of relevant passages found per question is determined by counting the number of
passages in the final retrieval set for the question that are members of the absolute retrieval
set.

Precision is calculated for the final retrieval set using the standard formula of
number of relevant passages retrieved (absolute) / number of passages retrieved

Recall is calculated for the final retrieval set using the standard formula of
number of relevant passages retrieved (absolute) / total number of relevant passages
available

The ranking balance point (R) for each retrieval set (not just the final one) is calculated by
n
Y i * relevancei

i=

n
-relevancei

i=l

where n = number of passages in the retrieval set
i = position of the passage in the retrieval set
relevancei = relevance weight of passage i

This calculates where the midpoint of the relevant passages lies, accounting for the
relevance weight. The earlier in the retrieval set the relevant passages occur, the smaller
their midpoint. For example, consider a retrieval set of five passages of which the first two
are very relevant (weight = 2), the next two irrelevant (weight = 0), arid the last passage
somewhat relevant (weight = 1). The ranking balance point for this set would be:

(1*2) + (2*2) + (3*0) + (4*0) + (5*1) / 5 = 2.2

The random balance point for each retrieval set is calculated by (n+l)/2 where n is the
number of passages in the retrieval set. A random distribution of relevant passages in the
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set would have the midpoint (M) of the retrieval set as the balance point. Therefore, the
random balance point for the set of five passages in the previous example would be 3.

The best case balance point (BC) for each retrieval set is calculated by applying the ranking
balance point formula to the case where all very relevant passages preceded all somewhat
relevant passages which in turn preceded all non-relevant passages in the set. The worst
case balance point (WC) was not calculated, but it would be equal to M + ( M - BC ), as the
range from best case to worst case is symmetric about the random balance point. The best
case balance point for the example retrieval set would occur if the somewhat relevant
passage appeared in the third, rather than fifth, position. In this case, the ranking balance
point would be:

(1*2) + (2*2) + (3*1) + (4*0) + (5*0) / 5 = 1.8
Based on a best case balance point of 1.8, the worst case balance point would be 4.2.

The ranking balance points were normalized so that the random balance point fell on 0, the
best case balance point at 1, and the worst case balance point at -1. The normalization
performed was:

1) Centre range from best case to worst case about 0 by shifting down M units.
R' =R-M

2) Set range to be 2, from -1 to +1, by multiplying by 2/range.
R"=R'*2/(BC-WC)

= R'* 2/((M -BC) * 2) because range is symmetric about M.
=(R-M)/(M-BC)

3) Flip sign so that BC = 1, WC = -1.
Normalized ranking balance point (NR)=( M -R )/(M -BC).

For the example retrieval set, the normalized ranking balance point would be:
(3 -2.2) / (3 - 1.8) = 0.67.

Summaries Calculated for Each System
The following results were calculated by entering the numbers generated above into a
Microsoft Works spreadsheet (see Appendix IV). For each system the means calculated
were:

* number of queries per question
* time per question (seconds)
" number of relevant passages (user) per question
* user precision
* number of relevant passages (from absolute retrieval set)
* precision
• recall

For each ranking algorithm (the expert system's, and randomness) the following means
were calculated:

* balance point
* normalized balance point

4.3 Results

The means were compared to determine if their differences were statistically significant.
Pairwise two-tailed t-tests were performed. A difference was considered significant if its
probability of occurring due to chance was less than 5% at the 95% confidence level (a
10% chance at the 95% confidence level was considered marginally significant). Pairs of
means with statistically significant differences are flagged with asterisks.
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4.3.1 Search Effectiveness

All three systems retrieved comparable numbers of relevant passages. Whereas there
seemed to be higher recall with the thesaurus, shown by a mean of 7.688 compared to a
mean of 7.292 with the expert system, this difference was not significant (p = 0.5333).

number of relevant passages (user)
per question
• user alone 7.375
* user and thesaurus 7.688
• user and expert system 7.292

All three systems produced comparable precision, based on the subject's relevance
judgements.

* user precision
* user alone 0.763
• user and thesaurus 0.786
" user and expert system 0.761

All three systems retrieved approximately the same number of passages from the absolute
retrieval set.

* number of passages from absolute retrieval set
* user alone 5.521
• user and thesaurus 5.708
" user and expert system 5.729

Recall was comparable across all three systems. There was a slight improvement in recall
for the user and expert system configuration, but the advantage over the user-alone
configuration was not significant (p < 0.6988).

*recall
" user alone 0.364
• user and thesaurus 0.368
• user and expert system 0.379

The user and expert system configuration produced marginally significant improvements in
precision when compared with the user-alone configuration.

• precision
* user alone 0.530 * (p < 0.0817)
* user and thesaurus 0.576
* user and expert system 0.604 *

4.3.2 Search Efficiency

The expert system improved search efficiency, as measured by number of user queries over
both the user alone and user plus thesaurus.

* number of queries per question
* user alone 4.833 * (p < 0.0001)
" user and thesaurus 5.458 ** (p < 0.0001)
• user and expert system 2.354 *,**
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The expert system was not significantly slower than the other two systems. However,
MICROARRAS was being executed by a Sun 4 with the user-expert system configuration
resulting in approximately a doubling of its speed. The increase in search time observed
when the user was using a thesaurus, rather than searching alone, was significant, but only
marginally.

mean time per question (seconds)
• useralone 474.5 * (p<O.lO1)
" user and thesaurus 571.5 *
* user and expert system 539.8

4.3.3 Ranking

The expert system ranked relevant documents more highly than would be predicted by
randomness. The expert system's ranking was compared to a random distribution for 74
sets of retrieved passages.

* balance points
• random 5.00 * (p < 0.0165)
* expert system 4.53 *

• normalized balance points ( on range of-1 to +1)
* random 0.000 * (p < 0.0025)
" expert system 0.195 *

4.4 Analysis

The first hypothesis, that the expert system can improve the search effectiveness for a
novice user, was partially supported by this study. The expert system produced
marginally significant improvements in precision and seemed to indicate improvements in
recall, but these results were not significant. Providing the online thesaurus produced no
improvement in search effectiveness.

The improvements in precision may result from the expert system applying better
broadening techniques. The subjects, when searching alone, would often stop with a very
broad query and examine a large set of retrieved passages (over fifteen) looking for
relevant information. This type of strategy results in the lower precision observed when
the subjects search on their own.

However, this browsing strategy also accounts for the ability of the subjects to produce
recall comparable to the expert system. For example, in two questions with large absolute
retrieval sets (questions 4 and 12) the subjects were able to retrieve, on average, 10 and
10.25 relevant passages on their own compared with the expert system's retrieval of 8 and
7.75 passages, respectively. By using a target number of 10 for these broader questions,
the expert system was operating at a disadvantage. More relevant information was easily
found, judging by the high recall of the subjects, but the expert system did not even
attempt to further broaden the query.

Another factor which may contribute to the marginal performance improvements seen may
be the choice of subjects. The novice searchers in this experiment were all expert
programmers. Programming ability has been closely linked with searching ability
[Borgman, 1987], so it may be that the subjects in this experiment were able to achieve
better than average search results on their own and were less in need of the expert system
to search effectively than another group of subjects would be. It would be worthwhile to
run a different subject pool with an appropriate textbase to see if the expert system is able
to improve the effectiveness of users with lower searching aptitudes.
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Finally, an analysis of the expert system's performance on a larger range of questions, and
with different stopping criteria, may be able to identify a class of questions for which the
existing system outperforms searchers on their own.
The second hypothesis, that the expert system can improve the search efficiency of novice
searchers, was supported. Using the expert system significantly reduced the number of
queries subjects needed to answer a given question. Subjects required fewer than half as
many queries per question on average using the expert system versus the other two
versions of the system. This is a substantial improvement. The expert system reduced the
amount of user effort required by decreasing the number of queries a user needs to design
to express their information needs.

If efficiency is measured in terms of total user time, the expert system fares less well. The
expert system was not significantly slower than either of the other two systems, but it was
necessary to run MICROARRAS on a faster machine to achieve this. Even running
MICROARRAS on a SUN4, the average amount of system time increased from 66
seconds (17%) to 235 seconds (52%). Since the SUN4 configuration was approximately
twice as fast, this represents a sevenfold increase in system time. Roughly half of this
increase resulted from the increased number of queries MICROARRAS had to handle.
The users submitted an average of 2.35 queries per question with the expert system,
versus 5 when querying on their own. However, due to extensive reformulation, the
expert system sent 15 queries to MICROARRAS per question, on average.

The rest of the difference is caused by the addition of thesaural terms. The increased
system time required per query is evenly split between processing the addition of
stemgroups and increased MICROARRAS time to evaluate the longer queries formed by
the expert system. First, the thesaural terms are retrieved and new MICROARRAS
categories are created for each candidate stemgroup. Second, the candidate stemgroups are
presented to the user for filtering. Next, the selected stemgroups must be added to the
appropriate concept category. Finally, the new, longer, query is sent to MICROARRAS to
be evaluated.

The number of queries necessary is a measure of user effort, and I was able to show that
the expert system could reduce the amount of work a user had to do. The total user time
measures the amount of time a user must spend to get the information he is seeking. This
was roughly the same for all three system configurations. The system time was much
greater using the expert system, but this is to be expected. This version of the expert
system was designed with correctness rather than efficiency in mind, and there are several
ways that it could be sped up (see Section 5.2.1).

Allowing the subjects to access the online thesaurus actually decreased the subjects'
efficiency. They took significantly more time than when they searched on their own, and
required no fewer queries. This allows us to conclude that the improvement in efficiency
seen above was due to the expert system's knowledge base, not just the provision of an
online thesaurus.

The third hypothesis that the expert system could rank passages in decreasing order of
relevance was supported. Although the expert system did present relevant passages
significantly earlier than would be predicted by randomness, the improvement was not
large enough to be considered truly successful. The current algorithm needs to be
evaluated with different weights or a somewhat different algorithm needs to be tried in
order to further improve the ranking function. Decreasing the query term weights more
quickly as the query terms move farther from the original may improve the ranking by
placing more emphasis on the user's original search terms. Using a more sophisticated
closeness factor, one that took into account to how many words apart the search terms
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were in the passage, as well as sentence and paragraph measures considered in this

version, could also lead to improved ranking.

4.5 Questionnaire

The subjects were asked for their opinions after they had completed the experiment. This
section summarizes their responses.

User-Alone Version
The number of subjects (of the total twelve) who said they used each of several
reformulation techniques follows. The techniques used by the expert system were tried by
most of the subjects. The techniques used by the largest number of subjects - adjusting
context, adding stemwords, and adding search terms to concepts - are the same techniques
that the expert system tries first.

12 adjusting context
11 adding OR terms - from knowledge, from reading passages
7 replacing terms - from knowledge, from reading passages
8 removing AND terms
9 adding ANDNOT terms
12 using stemwords
8 whole new query

User-Thesaurus Version
When asked about thesaurus usage, three subjects used it a lot, 4 used it some, and 5 used
is very little. Those who used it little or none found it easier to come up with related terms
on their own and found using the thesaurus tedious. Subjects were similarly split on the
usefulness of the thesaurus, with 6 users finding it helpful and 6 disagreeing. This lack of
enthusiasm for the thesaurus is reflected in the experiment by the lack of improvement of
effectiveness with the thesaurus and the decrease in efficiency.

User-Expert System Version
The subjects were asked which features of the expert system they liked best. The automatic
addition of terms from the thesaurus was the most frequently mentioned (8 subjects),
whereas the automatic context adjustment was the second most popular feature (3 subjects).
Many subjects (8) mentioned the decreased amount of work needed to perform a search,
with three of them specifically mentioning that they did not have to think as much. Other
features mentioned which decreased the user effort were the simplified syntax, decreased
typing, and the fewer queries to remember.

System slowness was the feature most disliked (6 subjects). Although the amount of time
necessary to answer a question was no greater with the expert system (see Section 4.3.2),
there was less work for the user to do so time seemed longer. The other main complaints
concerned the user interface. The subjects were fairly evenly split between wanting the
system to proceed more automatically, with less prompting from them (4 subjects),
whereas others wanted the system to explain what it was doing and/or allow the user to
direct it (5 subjects). These comments lead to the conclusion that if a usable system is to be
built based on the success of this research prototype, the execution of the system must be
sped up and more work on interface design is needed.

System Comparisons
Almost all the subjects (10) found the user-expert system version the easiest to use, with
the remaining two subjects split between the other two versions. Not surprisingly, given
the comparable effectiveness of the three systems, the subjects were split on which system
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they felt gave the best results. Three voted for the user-alone version, two for the user-
thesaurus, and three for the expert system. Three said it was a tie between the user-
thesaurus and the expert system and one abstained.

Finally, the subjects made many comments the bulk of which dealt with user interface
issues. These are summarized in Section 5.1 which deals with possible revisions to the
system.
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Chapter 5
Future Work

5.1 Refinements

Running the experiment suggested several possible refinements to the system. The
experimental subjects had many useful comments, the bulk of which dealt with the desire
for a more sophisticated user interface. These are summarized in Section 5.2.1.
Improvements to the searching knowledge base were suggested by observing the expert
system in use. Some of the possible modifications are described in Section 5.1.2.

5.1.1 User Interface

Query Language
A Boolean query language was used in order to make the system similar to existing
retrieval systems. However, the expert system parses the queries to identify positive and
negative concepts (each search term is assumed to represent one concept). Since many
users have difficulty forming proper Boolean queries (including, surprisingly, some
subjects with strong computer science backgrounds in this experiment) it would be easier to
have the users list the search terms which represent the concepts directly. The expert
system could form initial Boolean queries based on these search terms by joining the
original terms with ANDs. The query could then be expanded by adding OR terms from the
thesaurus.

Amount of Interaction
The desired amount of interaction between the system and the user varies greatly from user
to user. The more experienced the searcher, the more user control it may be desirable to
allow. On the other hand, many subjects wanted the system to run silently, with fewer
prompts for feedback. The two conflicting desires suggest that the amount of interaction
should be set by the user to meet his individual needs. Even subjects that indicated they
wished more control over the search process did better with the expert system than without.
So, although users may wish to direct the system, they may achieve better results if they
are not allowed to do so.

There are two ways that the user is asked to interact with the system: filtering suggested
stemgroups and deciding whether or not to continue the reformulation. These features are
discussed separately in the following paragraphs.

Stem Filtering
Users were allowed to choose which stemgroups to add from a list of candidates. This
feature was provided in an attempt to improve precision and increase system speed by
shortening the queries. There were two problems with allowing the users to filter
sterngroups. One is that subjects did not always recognize helpful stemgroups and would
filter out the very stemgroups that would have led to relevant passages. The second
problem is one of implementation. Rather than filtering at the stemgroup level, users
should be shown the relevant section of the thesaurus and allowed to filter entire nodes at a
time.
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Stopping Reformulation
The expert system displays the number of passages retrieved after each reformulation,
regardless of whether or not the reformulation caused any change. The subjects found it
hard to tell if any progress was being made and tended to abort the reformulation process
after several reformulations in a row which had no apparent effect. Often, the
reformulation process was stopped before it had run to completion on a query, when in
fact a few more reformulations would have led to good search results. It would be better
for the expert system to report back only when there has been a change in the retrieval set
to prevent users from becoming discouraged.

Speed
The desire for more control may be caused simply by the desire to search faster. If the
expert system could do its reformulations more quickly, users might have less desire to
direct the system themselves in order to "get there quicker." The slowness comes not from
the expert system code itself but rather the way in which the expert system interacts with
MICROARRAS. The expert system builds larger queries than most users would on their
own requiring a lot of work from MICROARRAS to evaluate them. This is an essential
characteristic of the expert system which cannot be changed; however the expert system
could be more efficient in how it sends the queries to MICROARRAS. Currently, no
record is kept of the previous query sent to MICROARRAS and each reformulation causes
the query to be evaluated from scratch. All of the categories are redefined although most of
them are unchanged from one query to the next. Sending only the changes from one
reformulation to the next should make the expert system version more competitive in terms
of speed.

Target Number
Specifying a target number is an unnatural way for users to state their information needs. It
would be preferable to have them indicate more generally the type of search they wish: for
example, high recall or high precision. The expert system could use this as a guide to the
number of reformulations to try before reporting back to the user. A high recall search
would run until completion or until it finds the maximum number of passages anyone is
likely to want to read from a screen. The high precision search could stop after adding
stemwords, synonyms, and broadening the context, unless there are no passages retrieved
using just these reformulations.

5.1.2 Knowledge Base

Observing the expert system reformulate real queries gave invaluable insight into which
types of queries it handled well, and which it did not. The improvements to the knowledge
base suggested by my observations fall into three categories: broadening techniques,
narrowing techniques, and multi-word phrases.

Broadening Techniques
Currently, the Boolean operators are loosened before negative concepts are removed. It is
a bigger change to replace ANDs with ORs than to drop the negative concepts from the
query so the order of application of these two reformulation techniques should be swapped.

A common type of query that required broadening was one that contained the intersection
of three or more concepts. In this case, broadening context and adding search terms to
each concept fails to address the fundamental problem of intersecting too many concepts.
The next step of replacing the ANDs with ORs is too drastic a change. It invariably leads to
too broad a query. Instead, the expert system should take the original query and drop each
of the concepts in turn. For example, the query 'A AND B AND C' would have partial
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queries 'A AND B', 'B AND C', and 'A AND C'. The number of passages retrieved by each
of the new partial queries should be reported back to the user, and he could restart the
expert system on whichever partial query best reflects his interests.

Narrowing Techniques
The most common type of query requiring narrowing consisted of a single, high-frequency
concept. None of the current reformulation techniques were of any use in this case. There
were no operators to change, no context to adjust, and adding search terms just makes the
query broader. This type of query should be treated as a special case. The concept's child
concepts from the thesaurus should be presented as alternative, more specific, queries. The
user could also be encouraged to AND this concept with another.

Multi-word Phrases
The treatment of multi-word phrases entered by the user which do not appear in the
thesaurus should be changed. Currently, the only expansions done are expanding each
word to its stemgroup and loosening the context allowed between the words of the phrase.
It would be preferable to treat the words of the phrase as separate concepts which are
ANDed together with adjacent context. Each phrase word could then be expanded using the
full range of thesaural relationships, as is the case with regular search terms.

5.2 New Research Directions

Future research building on this work falls into four major categories: knowledge base,
query language, thesaurus, and passage ranking. First, whereas I have successfully
developed a searching knowledge base, it is not the only one possible. Other knowledge
bases, applying the current search techniques in different orders or containing entirely
different sets of search techniques, should be built and compared with the results of this
expert system. The goal of this research would be to iterate toward continually improving
online search assistants.

Second, more innovative types of query languages should be explored. One possibility that
seems interesting is to provide a graphical query language. The user would draw an
associative net of concepts. The contents of the nodes would be used to represent the initial
search terms and the spatial relationships between the nodes could be used to set the context
between the search terms. Furthermore, links between nodes could be used to deduce
logical relationships between concepts. This type of query language might work best with
a retrieval system based on term weights rather than Boolean queries. In this case, the term
weights could also be drawn fro- the spatial relationships between the nodes. It might
also be possible to do some graph matching between the user's query graph and the expert
system's thesaural graph.

Additionally, research is needed into how to produce the online thesaurus automatically.
The Blaauw-Brooks manuscript contains the following hierarchy of concepts: chapter
tiles, section titles, subsection titles, paragraph tiles, and italicized words. A quasi-
thesaurus could easily be built using the embedded format marks to identify the word of
interest in the original text. The back-of-the-book index could be used to assist
identifications of the stemgroups and multi-word phrases. The main difficulties would be
handling the many multi-word phrases in the thesaurus and producing the stemgroups. In
this case, a stemming algorithm may help. The performance of the expert system using this
thesaurus could be compared to the performance using the hand-built one.

Finally, more work is needed to improve the ranking of the retrieved passages. The current
ranking algorithm should be tried with different weights for the query search terms and the
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closeness factor. It may be necessary to try entirely different algorithms, possibly
incorporating syntactic or semantic information, to achieve high quality ranking.

In conclusion, I have demonstrated that an expert system can provide online search
assistance to improve the performance of novice searchers. Whereas more research is
necessary to develop a better search assistant, I have been able prove that a useful search
assistant can be developed which is domain independent, and that implementation of such a
system is feasible now.
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Appendix II
Rule Base

11.1 OUtils.ops

This module contains the type declarations, external procedure definitions, working
memory element declarations, and the local procedures.

module OUtils 0
(
-- Type declarations
type buffer = array( 1025:char)

-- The external C routines used by the Expert System.
external procedure CAddNegativeChildren( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddNegativeParents( &OldQuery: out integer, &NewQuery: out

integer);.
external procedure CAddNegativeSiblings( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddNegativeStemwords( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddNegativeSynonyms( &OldQuery: out integer, &NewQuery: out

integer );
external procedure CAddPositiveChildren( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddPositiveParents( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddPositiveSiblings( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddPositiveStemwords( &OldQuery: out integer, &NewQuery: out

integer);
external procedure CAddPositiveSynonyms( &OldQuery: out integer, &NewQuery: out

integer );
external procedure CChangeContext( &OldContext: out integer, &NewContext: out integer

external procedure CAddS tem( &Concept: out integer, &S temld: out integer);
external function CContinueOrNoo: logical;
external procedure CCopyBuffer( &Destination: out buffer, &Source: out buffer);
external function CDisplayOrNo( &Query: out integer,&NumPassages: out integer):

symbol;
external procedure CDisplayPassage( &Passage: out integer);
external procedure CDisplayConcordance( &Reply: out symbol);
external procedure CErrorHandle( &Message: out symbol );
external function CFillStemgroup( &Conceptid: out integer, &Stemid: out integer, &Dist:

out integer): integer,
external function CGetNewConcept( &Id: out integer, &Sign: out char, &Stem: out

integer, &iFreq: out integer): logical;
external function CGetFirstPassage( &Reply: out symbol,&Passage: out integer): logical;
external function CGetNextPassage( &RZeply: out symbol, &Passage: out integer): logical;
external function CGetFirstChild( &Concept: out integer, &Stern: out integer, &Word: out
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symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetNextChild( &Concept: out integer, &Stem: out integer, &Word: out

symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetFirstParent( &Concept: out integer, &Stem: out integer, &Word: out

symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetNextParent( &Concept: out integer, &Stem: out integer, &Word: out

symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetFirstSibling( &Concept: out integer, &Stem: out integer, &Word:

out symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetNextSibling( &Concept: out integer, &Stem: out integer, &Word:

out symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetFirstSynonym( &Concept: out integer, &Stem: out integer, &Word:

out symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetNextSynonym( &Concept: out integer, &Stem: out integer, &Word:

out symbol, &Dist: out integer, &Freq: out integer): logical;
external function CGetNumPassages( &Reply: out symbol ): integer;
external procedure CGetRelevanceo;
external function CGetQuery( &Version: out integer, &Target: out integer ): logical;
external function CGetPassageWt( &Passage: cut integer): real;
external procedure CGetStemName( &Id: out integer, &Name: out symbol);
external procedure CGetUniqueName( &FileName: out symbol );
external function CKeepChange( &OldNum: out integer, &NewNum: out integer, &Min:

out integer, &Target: out integer, &Max: out integer ): symbol;
external procedure CKillSystemO;
external procedure CLoosenOps( &OldQuery: out integer, &NewQuery: out integer);
external procedure CTightenOps( &OldQuery: out integer, &NewQuery: out integer);
external procedure CPassQueryToMA( &Query: out integer, &Reply: out symbol );
external procedure CRemoveAndnots( &OldQuery: out integer, &NewQuery: out integer);
external procedure CRemoveConcept( &Concept: out integer);
external procedure CRemoveQuery( &Query: out integer);
external procedure CRemoveStem( &Concept: out integer, &Sterid: out integer);
external procedure CReportDecision(&Query: out integer, &NumPassages: out integer,

&Decision: out symbol );
external function CStartSystem( &TraceFile: out integer): logical;
external procedure CUnFillStemgroup( &Conceptid: out integer, &Stemid: out integer);
external function CUserWantStem( &Conceptid: out integer, &Stemname: out symbol):

logical;
external function CWhatNext( &NumPassages: out integer, &Min: out integer, &Max: out

integer): symbol;
external procedure CWtPassages( &Query: out integer, &NumPassages: out integer,

&Reply: out symbol, &DisplayName: out symbol);

-- The working memory element type definitions.
type start = elemento;
type interactive = elemento; -- is user involved in reformulation
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type goal = element(
type: symbol;
subgoal : symbol;
min : integer, -- the minimum acceptable number of passages
toofew : integer;, -- the lower bound on "success"
justright : integer; -- the target number
toomany: integer;, -- the upper bound on "success"
max : integer, -- the maximum acceptable number

type reform = element(
global: symbol; -- narrow, broaden, or adjustcontext
next: symbol; -- narrow, broaden, or II
lastglobal : symbol; -- last global state visited
lastlocal : symbol; -- last local state visited
laststate : symbol; -- last state visited
step: integer, -- counter of steps in reformulation
dist: integer; -- distance of new terms from original term

type query = element(
status : symbol;
version : integer;,
name : symbol;
numpassages: integer,
context: integer;,
hi : integer;,
lo : integer;,

type concept = element(
status : symbol; -- is concept in current query or not
id : integer;, -- unique identifier (index to C structure)
sign :char;, + or -
freq: integer, -- total frequency of concept group members
state : symbol; -- last broaden/narrow operation

type stem = element
(

id: integer;, - unique identifer (index to C structure)
concept: integer, - concept group that term is a member of
name : symbol; - stemname
freq : integer;, -- frequency of the stemgroup
added: integer;, -- which reformulation added the term
dist : integer, -- distance of stem from original term

-- (O=same; l=stemgroup; 2=synonym; 3=parent;
-- 4=sibling; 5=child)
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type passage = element(
status : symbol;
id : integer;,
wt: real;

-- Constants
-- As OPS does not have named constants, I am using 20= maxcontext,
-- 23=defaultcontext, 26=maxcontext for now.

-- Global Variables
global

&TRACE : integer;,

-- Procedures

-- NameToSymbol() is called by the C routines to convert an array of
-- characters into a symbol. It is necessary because C routines cannot
-- directly call cvsymbol.

function NameToSymbol(&N : name, &S : out symbol) : logical(
return( cvsymbol(&S, &N));};

- SymbolToNameO is called by the C routines to convert a symbol into
- an array of characters. It is necessary because C routines cannot
-- directly call name.

function SymbolToName(&S: symbol, &N : out name) : integer{
return( nane(&N, &S));

- Quit returns OTRUE if the command is Quit, OFALSE otherwise.

simple function Quit(&Q : buffer) : logical{
if ( &Q(I] = 'A' A &Q[2] = '0' ) return( IB)
else return( OB);
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11.2 ORules.ops

This module contains the production rules which form the heart of the knowledge base.

module ORules 0)

use OUtils;

-- Goal: start ---------- ----------- ----------- --

rule Init

&I (start);

local tracfiledinteger,

&tracefile = &TRACE;
if ( CStartSystemn( &tracefile) OB)

call CErrorHandle( ICannot start system.I)
else

make (goal type=getquery; subgoal=II1;
min=-l1; toofew=- 1; justright=- 1; toomany=-l1; max=- 1)

remove &I;

-- Goal: getquery---------------------------------------------

-Get a query from the user.

rule GetQuery

&G ( goal type=getquery)

local &querynumn integer,
&target: integer,
&realtarget : real,
&id :integer,
&sign: char,
&freq: integer,
&stemid :integer,
&fiame: symbol,
&min: integer,
&toofew :integer,
&toomany :integer,
&max :integer,

&querynumn =0;
if ( CGetQuery( &querynum, &target )=OB)

modify &G ( type=quit)
else

make ( query status=new; version=&querynum; context=-23; hi=23; lo=23;
numpassages=-l; narne=II );
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&id = 0;
while ( CGetNewConcept( &id, &sign, &stexnid, &freq)1 B)

call CGetStemNanie( &stemid, &name);
make ( concept id=&id; sign=-&sign; freq=&freq; status=active;

state=original );
make (stem id=&stemid, concept=&id; name=&name; freq=&fr-eq;

added---, dist=0);
&id =&idi1;

cast &realtarget = &target;
cast &min = &realtarget*O.5;
if (&min < 1&min= 1;

cast &toofew =&realtarget*O.8;

if ( &toofew <1I) &toomany=-1;

cast &toomany = &realtarget* 1.2;
if ( &toomany > 25 ) &toomany=25;

cast &max = &realtarget* 1.5;
if ( &max > 25 ) &max=25;

modify &G (type=sendquerytoMA; min=-&min; toofew=&toofew;
justright-&target; toomany=&toomany; max=&max)

-- Goal: sendquery -----------------------------------------

-Send a query to MICROARRAS.

rule SendQueryToMA
I

&G ( goal type--sendquerytoMA)
&Q ( query status=new)

local &version:integer-
local &narne:symbol;

&version = &Q.version;
call CPassQueryToMA( &version, &namne);

modify &G ( type=checkresults );
modify &Q ( status=sent; naxne=&name)
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-- Goal: checkresults ---------------------------

-Find out how many passages were retrieved by the user's intiial query.
-If reformulation is necessary, this rule creates a reform wine, and sets
-the global and last fields.

rule ChecklnitialResults

&G ( goal type=checkresults)
( (interactive );

&Q (query status=sent)
- reform)

local &name : symbol;
local &nuxnpassages :integer
local &version: integer
local &results: symbol;
local &toofew :integer,
local &target: integer,
local &toomany: integer,

&namie = &Q.namne;
&version = &Q.version;
&numpassages = CGetNumPassages( &nanme);
&toofew = &G.toofew;
&target = &G.justright;
&toomany = &G.toomany;
&results = CWhatNext( &numpassages, &toofew, &toomany)
call CReportDecision( &version, &numpassages, &results);

if ( &results=success)

modify &G ( type--success)
modify &Q ( status=final; numpassages=&numpassages)

else

modify &G ( type--reformulate)
modify &Q ( status=evaluated; numpassages=&numpassages)
make (reform step=l1; global=&results; next=-&results; dist=-O;

lastglobal=original; lastlocal=original; laststate=original)

rule InteractiveChecldnitialResults

&G ( goal type=checkresults)
&W ( interactive );
&Q ( query status=sent)

- reform)

local &namne: symbol;
local &nuxnpassages :integer,
local &version: integer,
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local &results: symbol;
local &toofew :integer,
local &target: integer,
local &toomany: integer,
local &continue: logical;

&name = &Q.name;
&version = &Q.version;
&numpassages = CGetNumPassages( &name)
&toofew = &G.toofew;
&target = &G.justright;
&toomany = &G.toomany;
&results = CWhatNext( &numpassages, &toofew, &toomany)
call CReportDecision( &version, &numpassages, &results)
&continue = CContinueOrNoO;

if (( &results=success ) \V ( &continue=-OB)

modify &G ( type=success)
modify &Q ( status=final; numpassages=&numpassages)

else

modify &G ( type--reformulate)
modify &Q ( status=evaluated; numpassages=&numpassages)
make (reform step=l1; global=&results; next--&results; dist=-O;

lastglobal=original; lastlocal=original; laststate=original)

-After all concepts have been processed, ask the user for direction.

rule Broaden WhatNext

&G ( goal typeo'refornulate; subgoal=II)
&R ( reform next=broaden );

( (concept sign='+'; stateo>&R.laststate)
-(stem added=-l)1

modify &G ( subgoal=whatnext)

-- After all concepts have been processed, ask the user for direction.

rule NarrowWhatNext

&G (goal type<oreformulate; subgoal=lII)
&R ( reform next--narrow );

-(concept sign='-'; state<>&R.laststate)
- stemn added=-l)1
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modify &G ( subgoal=whatnext)

-SubGoal: whatnext --------------------------------

-Decide what to do next based on the target number.

rule WhatNext

&G (goal subgoal=whatnext)
- ( interactive );
&Q (query status=evaluated)
&R ( reform);

local &results: symbol;
local &version: integer,
local &nunipassages :integer,
local &toofew :integer,
local &target: integer,
local &toomany :integer,

&numpassages = &Q.numpassages;
&version =&Q.version;

&toofew =&G.toofew;

&target = &G.justright;
&toomany = &G.toomany;
&results = CWhatNext( &numpassages, &toofew, &toomany)
call CReportDecision( &version, &numpassages, &results)

if ( &results=success)
U

modify &G ( type=success; subgoal=tI)
modify &Q ( status=final)
remove &R;

else

modify &G ( type--reformulate; subgoal=H);
modify &R ( step=@.step+l; next=-&results)

-Decide what to do next based on the target number.

rule InteractiveWhatNext

&G ( goal subgoal=whatnext)
&I ( interactive );
&Q ( query status=evaluated)
&R (reform)
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local &results: symbol;
local &version: integer,
local &numpassages -integer,
local &toofew: integer,
local &target : integer,
local &toomany: integer
local &continue: logical;

&nurnpassages = &Q.numpassages;
&version = &Q.version;
&toofew = &G.toofew;
&target = &G.just-ight;
&toomany = &G.toomany;
&results = CWhatNext( &numpassages, &toofew, &toomany)
call CRePortDecision( &version, &numpassages, &results);
&continue = CContinueOrNoo;

if (( &results=success )V(&continue=-OB)

modify &G ( type=success; subgoal=II)
modify &Q ( status--final)
remove &R;

else

modify &G ( type--reformulate; subgoal=II)
jmodify &R ( step=@.step+ 1; next=-&results)

-SubGoal: aredoneflllstems........................----------

-Decide whether or not we have success, based on the target number.
-Used only in the middle of the filistems loop.

rule AreDoneFiliStems

&G ( goal subgoal=aredoneflfstems)
&Q (query status=evaluated)
&R (reform);

local &results: symbol;
local &version: integer,
local &numpassagcs: integer,
local &toofew: integer,
local &target: integer,
local &toomany :integer,

&numpassages = &Q.numpassages;
&version =&Q.version;
&toofew =&G.toofew;

&target -&G.justright;
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&toornany = &G.toomany;
&results = CWhatNext( &numpassages, &toofew, &toomany)

if ( &results=success)

call CReportDecision( &version, &nunipassages, &results)
modify &G ( type=success)
modify &Q ( status=final)
remove &R;

modify &G ( subgoal=tI)

-SubGoal: aredoneaddstems----------------------------------

-Decide whether or not we have success, based on the target number.
-Used only in the middle of the addstems loop.

rule AreDoneAddStems

&G ( goal subgoal=aredoneaddstems)
&Q (query status=evaluated)
&R (reform);

local &results: symbol;
local &version :integer,
local &numpassages :integer,
local &toofew -.integer,
local &target: integer,
local &toomany :integer,

&numpassages = &Q.numpassages;
&version = &Q.version;
&toofew = &G.toofew;
&target = &G.justright;
&toomany = &G.toomany;
&results = CWhatNext( &nunipassages, &toofew, &toomany)

if ( &results--success)

call CReportDecision( &version, &nurnpassages, &results)
modify &G ( type--success)
modify &Q ( status=flnal)
remove &R;

modify &G ( subgoal=addstems)
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-SubGoal: fliterstens ---------------------------------------

-Remove any stems with fr-equency > maxfr-equency.

rule FrequencyFilter

&G (goal subgoal=fr-eqfilter)
&S (stem freq > 250; added=-l)1

remove &S;

-Go on to duplicate filtering.

rule FrequencyFilterS top

&G (goal subgoal=freqfilter)
( (stem freq > 250; added=-l);

modify &G ( subgoal=dupfilter)

-If there are no stems left, bypass dupfilter

rule NoStemsToAddl

&G ( goal subgoal=freqfilter)
-.(stem added=-l)1

modify &G ( subgoal=ll)

-Remove any duplicate stems

rule DuplicateFilter
I

&G ( goal subgoal=dupfilter)
&SI (stem added=-lI);
&S2 (stem (@.name-&S l.name); added<>-l1; (@.dist <= &S Ldist))

remove &Sl1;

-No more filtering to be done.

rule DuplicatelFilterStop

&G ( goal subgoal=dupfilter)
&S (stem added-lI);

- stem (@.name-&S.nanie); added<>-1; (@.dist <= &S.dist))
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modify &G ( subgoal=addstems);I;

- If there are no stems left, bypass addstems

rule NoStemsToAdd2I
&G (goal subgoal=dupfilter);
-(stem added=- 1);

modify &G ( subgoal=I);

-- SubGoal: fiilstem -------------------------------------------------------

-- Fill stems one at a time, checking for effect on query response.

rule FillStem
(

&G (goal subgoal=fillstem);
&Q ( query status=evaluated);
&S (stem added=-l );
&C ( concept id=&S.concept);
&R (reform)

local &freq: integer,
local &stemid: integer,
local &conceptid : integer;,
local &name : symbol;
local &numpassages: integer,
local &oldnum : integer,
local &dist : integer;,
local &min, &target, &max: integer,
local &decision : symbol;

&steroid = &S.id,
&conceptid = &C.id;
&dist = &R.dist;

&oldnum = &Q.numpassages;
&min = &G.min;
&target = &G.jusright;
&max = &G.max;

-- Fill in the stemgroup
&freq = CFillStemgroup( &conceptid, &stemid, &dist);

-- See how many passages there are now.
&name = &Q.name;
&numpassages = CGetNumPassages( &name);
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-- Check that the new stem doesn't put us outside the acceptable range.
&decision = CKeepChange( &oldnum, &numpassages, &Min, &target, &max);
if ( (&decision = Ikeepl )(

modify &S (freq=(@.freq+&freq); dist=l);
modify &C (freq=(&S.freq) );
modify &Q ( numpassages=&numpassages);

if ( &decision = kIiscardl)
call CUnFillStemgroup( &conceptid, &sterid);

modify &S (added=&R.step );
modify &G (subgoal=aredonefillstems);

-- SubGoal: addstems ----------------------------------------------------

-- Check with user before adding the stem.

rule InteractiveAddStem(
&G ( goal subgoal=addstems);
&I ( interactive );
&Q (query status=evaluated);
&S ( stem added=-I );
- ( stem (@.freq < &S.freq); added=-1);
&C (concept id--&S.concept);
&R (reform)

local &concept: integer,
local &freq : integer,
local &stemid : integer,
local &stemname : symbol;
local &oldnum : integer,
local &numpassages: integer,
local &name: symbol;
local &min, &target, &max: integer,
local &decision: symbol;

&concept = &S.concept;
&stemname = &S.name;
if ( CUserWantStem( &concept, &stemname) = IB){

&stemid = &S.id;

&oldnum = &Q.numpassages;
&min = &G.min;
&target = &G.justright;
&max = &G.max;

call CAddStem( &concept, &stemid);
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&name = &Q.name;
&numpassages = CGetNuniPassages( &narme)

-- Check that the new stem doesn't put us outside the acceptable range.
&decision = CKeepChange( &oldnum, &numpassages, &min, &target, &max)
if ( &decision = Ikeepi)

modify &S (added=&R.step)
modify &C (freq=(@.fr-eq+&S.freq))
modify &Q (numpassages=&numpassages)

if ( &decision = kIiscardl)

call CRemnoveS tem( &concept, &stemid)
remove &S;

else
remove &S;

modify &G ( subgoal=aredoneaddstems)

-Add new stems one at a dme, in increasing order of frequency,
-checking for effect on query response.

rule AddS tern

&G (goal subgoai=addstems)
- ( interactive );
&Q ( query status=evaluated)
&S (stem added=- 1);
- ( stem (@.freq < &S.frq); added=-1)I
&C ( concept id=&S.concept)
&R (reform)

local &concept: integer,
local &fr-eq : integer,
local &stemid: integer,
local &oldnum: integer
local &nuxnpassages :integer,
local &name: symbol;
local &min, &target, &max: integer
local &decision: symbol;

&concept = &S.concept;
&stemid = &S.id;

&oldnum = &Q.numpassages;
&min = &G.min;
&target = &G.justright;
&max = &G.max;
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call CAddStem( &concept, &stemid)

&name = &Q.nanie;
&nuxnpassages = CGetNumPassages( &namie);

- Check that the new stem doesn't put us outside the acceptable range.
&decision = CKeepChange( &oldnum, &numpassages, &min, &target, &max)
if ( &decision = Ikeepi)

modify &S (added=&R.step)
modify &C (freq=(@.freq+&S.freq))
modify &Q Cnumpassages=&numpassages)

if ( &decision = Idiscardi)

call CRemoveStem( &concept, &stemid)
remove &S;

modify &G ( subgoal=aredoneaddstems)

-After all stems for this concept have been added, process the next concept.

rule NoMoreStemsToAdd

&G ( goal subgoal=addstems)
&Q (query status=evaluated)
- ( stem added=-l)1
&R (reform);

modify &G ( subgoal=II)

-SubGoal: changecontext-------------------------------------

-Increase the context.

rule IncreaseContext

&G (goal subgoal=changecontext)
&R (reform next=broaden );
&Q (query status=evaluated)

local &oldcontext: integer,
local &newcontext : integer
local &name: symbol;
local &oldnum : integer,
local &numpassages: integer,
local &m-in, &target, &mnax: integer,
local &decision: symbol;
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&oldnum =&Q.numpassages;

&min = &G.min;
&target = &G.justright;
&miax = &G.max;

&oldcontext = &Q-context;
&newcontext = &oldcontext+l;
call CChangeContext( &oldcontext, &newcontext)

&namie = &Q.narne;
&numpassages = CGetNumPassages( &namie)

-- Check that the new stem doesn't put us outside the accedtable range.
&decision = CKeepChange( &oldnum, &numpassages, &min, &target, &max)
if ( &decision = Ikeepi)

modify &Q ( numpassages=&numpassages; context--&newcontext)
if ( &newcontext > &Q.hi )

modify &Q (hi=&newcontext);

if ( &decision = Idiscardi)
call CChangeContext( &newcontext, &oldcontext)

modify &G ( subgoal=whatnext)

-Decrease the context.

rule DecreaseContext

&G (goal subgoal=changecontext)
&R (reform next=narrow );
&Q (query status=evaluated)

local &oldcontext :integer-,
local &newcontext: integer,
local &name : symbol;
local &oldnurn: integer,
local &nurnpassages :integer,
local &miin, &iarget, &max: integer,
local &decision: symbol;

&oldcontext = &Q.context;
&newcontext = &oldcontext-l1;
call CChangeContext( &oldcontext, &newcontext)

&oldnuni = &Q.numpassages;
&min = &G.min;
&target = &G.justright;
&max = &G.max;
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&name = &Q.name;
&numpassages = CGetNumPassages( &name);

- Check that the new stem doesn't put us outside the acceptable range.
&decision = CKeepChange( &oldnurm, &numpassages, &min, &target, &max);
if ( &decision = Ikeepi)(

modify &Q ( numpassages=&numpassages; context=&newcontext);
if ( &newcontext < &Q.lo )

modify &Q (lo=&newcontext);

if ( &decision = kiiscardl)
call CChangeContext( &newcontext, &oldcontext);

modify &G ( subgoal=whatnext );
};

-- Goal: reformulate ---------------------------------------------------

-- addstemwords ------------------------------------------------------------------

- Add stemwords to the query if we are continuing in the global direction
- and the last global state is original.

rule AddStemwordslnitl{
&G ( goal type=reformulate);
&R (reform (@.global=@.next); lastglobal=c-iginal; lasdlocal=original);

modify &G ( type=addstemwords);
modify &R ( lastglobal=addstemwords; laststate=addstemwords; step=@.step+1;

dist=l );};

-- Add stemwords to the query if we are continuing in the local direction
-- and the last local state is original, and the last global state is not original

rule AddStemwordsInit2

&G ( goal type-reformulate);
&R (reform (@.global<>@.next); lastlocal=original; (@.lastglobal<>@.lastlocal);

laststate<>adjustcontext);

modify &G ( type=addstemwords);
modify &R ( lastlocal=addstemwords; laststate=addstemwords; step=@.step+ 1;

dist=l);
};
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- Add stemwords to the positive stemgroups, in decreasing order of
-- frequency of concept group, if we are broadening.

rule AddPositiveStemwords(
&G ( goal type=addstemwords; subgoal=II);
&R (reform next=broaden );
&C (concept sign='+'; state=original);
- ( concept sign='+'; state=original; (@.freq < &C.freq));
&S (stem concept=&C.id);

modify &S (added=-I);
modify &C ( state=addstemwords);
modify &G ( subgoal=fillstem);

-- Add stemwords to the negative stemgroups, in decreasing order of
-- frequency of concept group, if we are narrowing.

rule AddNegativeStemwords(
&G ( goal type=addstemwords; subgoal=II);
&R (reform next=narrow );
&C ( concept sign='-'; state=original);
- ( concept sign='-'; state=original; (@.freq < &C.freq));
&S (stem concept=&C.id);

modify &S (added=- 1);
modify &G ( subgoal=fiUstem);
modify &C ( state=addstemwords);1;

-- addsynonyms -------------------------------------------------------------

-- Add synonyms to the query if we are continuing in the global direction
-- and the last global state is original.

rule AddSynonymslnitl(
&G ( goal type-reformulate);
&R (reform (@.global=@.next); lastglobal=addstemwords; lastlocal=original);

modify &G ( type=addsynonyms);
modify &R ( lastglobal=addsynonyms; laststate=addsynonyms; step=@.step+l;

dist=2);
};
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-Add synonyms to the query if we are continuing in the local direction
-and the last local state is original, and the last global state is not original

rule AddSynonymslnit2

&G ( goal type--reformulate)
&R (reform (@.global<>@.next); lastlocal=addstemwords;

(@.lastglobal<>@.astlocal); laststatec<>adjustcontext)

modify &G ( type=addsynonyms)
modify &R ( lasdlocal=addsynonyms; laststate=addsynonyms; step=@.step+l1;

dist=2)

-Add synonyms to the positive concept groups, if broadening.

rule AddPositiveSynonyms

&G (goal type=addsynonyms; subgoal=II)
&R (reform next--broaden );
&C (concept sign=--'; state=addstemwords)
- ( concept sign=Y+; state=addstemwords; (@.freq < &C.freq))
&Q (query status=evaluated)

local &conceptid : integer,
local &stemid :integer,
local &freq : integer,
local &nanme: symbol;
local &more: logical;
local &dist : integer,

&dist = &R.dist;
&conceptid = &C.id-
&more = CGetFirstSynonym( &conceptid, &sternid, &nanme, &disr, &freq)
while ( &more)

make (stem id-&stemid; concept=&conceptid; name--&name;
freq=7&freq; added=-l1; dist-2 );

&more = CGetNextSynonym( &conceptid, &stemid, &name, &dist, &freq)

modify &G ( subgoal=freqfilter)
modify &C ( state--addsynonyms)

-Add synonyms to the negative concept groups, if narrowing.

rule Add.NegativeSynonyms

&G ( goal type=addsynonyms; subgoal=II)
&R (reform next--narrow );
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&C (concept sign='-'; state=addstemwords)
- (concept sign='-'; state=addstemwords; (@.freq < &C.freq))
&Q (query status=evaluated)

local &conceptid :integer,
local &steznid: integer,
local &freq :integer,
local &name: symbol;
local &more: logical;
local Mist : integer,

&dist = &R.dist;
&conceptid = &C.id,
&more = CGetFirstSynonym( &conceptid, &stemid, &name, &dist, &fr-eq)
while (&more)

make ( stem id=&stemid; concept=&conceptid; name--&name;
freq=&freq; added=- 1; dist-2 );

&more = CGetNextSynonym( &conceptid, &stemid, &namne, &dist, &freq)

modify &G ( subgoal=fr-eqfllter );
modify &C ( state--addsynonyms)

-change contexti ----------------------------------------------

-Change the context if we are continuing in the global direction,
-and the last global state was addsynonyms.

rule ChangeContexdlnitl

&G ( goal type--reformulate)
&R (reform (@.global=@.next); lastglobal=addsynonyms; lastlocal=original)

modify &G ( type=changecontextl; subgoal=changecontext)
modify &R (lastglobal=changecontextl; laststate=changecontextl; step=@.step+l)

- Change Context if we are continuing in the local direction and the
- last local state was addsynonyms, and the last global step was

-not adding synonyms.

rule ChangeContextlnit2

&G ( goal type-reformulate)
&R ( reform (@.global<>@).next); lastlocal=addsynonyms;

(@.lastglobalc>@ .lastlocal); laststte<>adjustcontext)

modify &G (type=changecontextl; subgoal=changecontext)
modify &R (lastiocal=changecontextl; laststate=changecontextl; step=@.step+ 1)
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-- addparents --------------------------------

-Add parents to the query if we are continuing in the global direction
-and the last global state is original.
-As we are changing the query contents, reset lo and hi.

rule AddParentslnitl

&G ( goal type--reformulate)
&R (reform (@.global=@).next); lastglobal=changecontextl1; lastlocal=original)
&Q (query status=evaluated)

modify &G ( type=addparents)
modify &R ( lastglobal=addparents; laststate=addparents; step-@. step+ 1;

dist=4 );
modify &Q ( lo=@ .context; hi=@ .context)

-Add parents to the query if we are continuing in the local direction
-and the last local state is original, and the last global state is not original

rule AddParentslnit2

&G ( goal type--reformulate)
&R (reform (@.global<>@ .next); lastlocal=changecontext 1;

(@.lastglobal>@ .lastlocal); laststate<o'adjustcontext)

modify &G ( type=addparents)
modify &R ( lastlocal=addparents; laststate=addparents; step=@.step+l;

dist=4)

-Add parents to the positive concept groups, if broadening.

rule AddPositiveParents

&G (goal type=addparents; subgoal=1I)
&R (reform next--broaden );
&C (concept sign='+; state=addsynonyms);

-(concept sign='+'; state=addsynonyms; (@.frq < &C.freq))
&Q ( query status=evaluated)

local &conceptid: integer,
local &stemrid: integer,
local &fr-eq :integer,
local &namne: symbol;
local &more: logical;
local &dist : integer,

&dist = &R.dist;
&conceptid = &C.id;
&more = CGetFirstParent( &conceptid, &stemid, &namie, &dist, &freq)
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while (::&more)

make (stem id=&stemid; concept-&conceptid; name=&nanie;
freq=&freq; added=-1; dist=3 );

&more = CGetNextParent( &conceptid, &stemid, &name, &dist, &freq)

modify &G (subgoal=fireqfllter)
modify &C (state=addparents)

-Add parents to the negative concept groups, if narrowing.

rule AddNegativeParents

&G (goal type=addparents; subgoal=II)
&R (reform next--narrow );
&C ( concept sign='-'; state=addsynonyms)

-(concept sign='-'; state=addsynonyms; (@.freq < &C.freq))
&Q ( query status=evaluated)

local &conceptid : integer
local &stemid :integer,
local &fr-eq : integer,
local &nane : symbol;
local &more .logical;
local &dist: integer,

&dist = &R.dist;
&conceptid = &C.id,
&more = CGetFirstParent( &conceptid, &stemid, &name, &dist, &freq)
while (&more)

make ( stem id=&stemid; concept-&conceptid, name=&nanie;
freq=&freq; added=-l; dist-3 );

&more = CGetNextParent( &conceptid, &stexnid, &name, &dist, &freq)

modify &G (subgoal=frqfilter)
modify &C (state=addparents)

-addsiblings -------------------------------------------------

-Add siblings to the query if we are continuing in the global direction
-and the last global state is original.

rule AddSiblingslnitl

&G ( goal type--reforniulate)
&R (reform (@.global=@).next); lastglobal=addparents; lastlocal=original)
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modify &G (type=addsiblings)
Modify &R (lastglobal=addsiblings; laststate=addsiblings; step=@.step+1;

dist=-5)

-Add siblings to the query if we are continuing in the local direction
-and the last local state is original, and the last global state is not original

rule AddSiblingslnit2

&G ( goal type--reformulate)
&R (reform (@.globaio@.next); lastlocal=addparents; (@.lastglobal<>@.lastlocal);

laststate'oadjustcontext)

modify &G ( type=addsiblings)
modify &R ( lastlocal=addsiblings; laststate=addsiblings; step=@.step+l;

dist=-5)

-Add siblings to the positive concept groups, if broadening.

rule AddPositiveSiblings

&G (goal type=addsiblings; subgoal=II)
*&R (reform next=broaden );
&C (concept sign='+'; state=addparents)
- ( concept sign='+'; state=addparents; (@.freq < &C.freq))
&Q (query status=evaluated)

local &conceptid : integer,
local &stemid: integer,
local &freq :integer,
local &name: symbol;
local &more: logical;
local &dist :integer,

&dist = &R.dist;
&conceptid = &C.id;
&more = CGetFirstSiblig( &conceptid, &stemid, &namie, &dist, &freq)
while ( &more)

make ( stem id-&stemid; concept=&conceptid, naxne-&nanie;
freq=&freq; added=-l1; dist=4 );

&more = CGetNextSibling( &conceptid, &stemid, &name, &dist, &freq)

modify &G ( subgoal=freqfllter);
modify &C ( state=addsiblings)
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-Add siblings to the negative concept groups, if narrowing.

rule AddNegativeSiblings

&G ( goal type=addsiblings; subgoal=1I)
&R (reform next--narrow );
&C ( concept sign=?-'; state=addparents)

( (concept sign='-'; state=addparents; (@.freq < &C.freq))
&Q ( query status=evaluated)

local &conceptid : integer
local &stenmid: integer,
local &freq : integer,
local &name: symbol;
local &more: logical;
local &dist : integer,

&dist = &R.dist;
&conceptid = &C.id;
&more = CGetFirstSibling(. &conceptid, &stemid, &namne, &dist, &freq)
while ( &more)

make ( stem id=&stemid; concept-&conceptid; name=&name;
freq=-&freq; added=- 1; dist=4 );

&more = CGetNextSibling( &conceptid, &stemid, &name, &dist, &fr-eq)

modify &G ( subgoal=freqfilter)
modify &C ( state=addsiblings)

-addchildren --- ----- ---------------------------------------

-Add children to the query if we are continuing in the global direction
-and the last global state is original.

rule AddChildrenlnitl

&G ( goal type--reformulate)
&R ( reform (@.global=@.next); lastglobal=addsiblings; lastlocal=original)

modify &G ( type=addchildren)
modify &R ( lastglobal=addchildren; laststate=addcbildren; step=@.step+l;

dist=6)
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-Add children to the query if we are continuing in the local direction
-and the last local state is original, and the last global state is not original

rule AddChildrenlnit2

&G ( goal type--reformulate)
&R (reform (@.global<o@.next); lastlocal=addsiblings; (@.lastglobalc>@.lasdocal);

laststateioadjustcontext)

modify &G ( type=addchildren)
modify &R ( lastlocal=addchildren; laststate--addchildren; step=@.step+1;

dist=-6)

-Add children to the positive concept groups, if broadening.

rule AddPositiveChildren

&G (goal type=addchildren; subgoal=Ii)
&R (reform next=broaden );
&C ( concept sign='+'; state=addsiblings)
- (concept sign='+'; state=addsiblings; (@.freq < &C.freq))
&Q (query status=evaluated)

local &conceptid: integer,
local &stemid: integer,
local &freq : integer,
local &name : symbol;
local &more: logical;
local &dist :integer,

&dist = &R.dist;
&conceptid = &C.id,
&more = CGetFirstChild( &conceptid, &stemid, &namie, &dist, &freq)
while ( &more)

make ( stem id=&stemid; concept=&conceptid; name=&name;
freq=&freq; added=-1; dist-5 );

&more = CGetNextChild( &conceptid, &stemid, &namne, &dist, &fr-eq)

modify &G (subgoal=freqfIter)
modify &C (state=addchildren)
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-Add children to the negative concept groups, if narrowing.

rule AddNegativeChildren

&G (goal type=addchildren; subgoal=1I)
&R (reform next--narrow );
&C ( concept sign='-'; state=addsiblings)

( (concept sign='-'; state=addsiblings; (@.freq < &C.freq))
&Q (query status=evaluated)

local &conceptid :integer
local &stemid: integer,
local &freq: integer,
local &name : symbol;
local &more: logical;
local &dist : integer,

&dist = &R.dist;
&conceptid = &C.id;
&more = CGetFirstChild( &conceptid, &stemid, &name, &dist, &freq)
while (&more)

make (stem id=&stemid; concept=&conceptid; naxne=&name;
freq=&freq; added=-1; dist-5 );

&more = CGetNextChild( &conceptid, &stemid, &name, &dist, &freq)

modify &G (subgoal=freqfilter)
modify &C (state=addchildren)

-changecontext2---------------------------------------------

-Change the context if we are continuing in the global direction,
-and the last global state was addchildren.

rule ChangeContextlnit3

&G ( goal type--reformulate)
&R (reform (@.global=@.next); lastglobal=addchildren)

modify &G ( type=changecontext2; subgoal=changecontext)
modify &R ( lastglobal=changecontext2; laststate=changecontext2; step=@. step+ 1)
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-Change Context if we are continuing in the local direction and the
-last local state was addchildren, and the last global step was
-not adding synonyms.

rule ChangeContextlnit4

&G (goal type--reformulate)
&R (reform (@.global<>@ .next); lastlocal=addchildren; (@.lastglobalc>@ .lastlocal))

modify &G ( type=changecontext2; subgoal=changecontext)
modify &R ( lastlocal=changecontext2; laststate=changecontext2; step=@.step+ 1)

-replaceops --------------------------------------------

-Replace the boolean operators if we are continuing in the global direction,
-and the last global state was changing context.
-As we are changing the query contents, reset lo and hi.

rule ReplaceOpslniti

&G ( goal type--reformulate)
&R ( reform (@.global=@.next); lastglobal=changecontext2; lastlocal=original)
&Q ( query status=evaluated)

modify &G ( type--replaceops)
modify &R ( lastglobal--replaceops; laststate--replaceops; step=@.step+ 1)
modify &Q ( lo=@.context, hi=@.context)

-Replace the boolean operators if we are continuing in the local direction
-and the last local state was changecontext2, and the last global step was
-not adding synonyms.

rule ReplaceOpslnit2

&G ( goal type--reformulate)
&R ( reform (@.global<o@.next); lastlocal=changecontext2;

(@.lastglobalc'@ .lastlocal); laststate<>adjustcontext)

modify &G ( type--replaceops)
modify &R ( lasdlocal--replaceops; laststate--replaceops; step=).step+ I)

-Loosen the boolean operators.

rule LoosenOps

&G ( goal type--replaceops; subgoal=II)
&R ( reform next=broaden );
&Q (query status=evaluated)

102



local &oldquerynum : integer,
local &newquerynum: integer,
local &oldcontext: integer,
local &namne: symbol;
local &oldnum :integer,
local &numpassages :integer,
local &min, &target, &max: integer,
local &decision: symbol;

&oldnum = &Q.numpassages;
&mnin = &G.min;
&target = &G.justright;
&max = &G.max;

&oldquerynumn = &Q.version;
&newquerynum = &oldquerynum+1;
call CLoosenOps( &oldquerynum, &newquerynum);

&oldcontext = &Q.context;
call CChangeContext( &oldcontext, 23)

call CPassQueryToMA( &newquerynunl, &name);
&numpassages = CGetNumPassages( &nanme);

-- Check that the new stem doesn't put us outside the acceptable range.
&decision = CKeepChange( &ol)dnum, &numpassages, &midn, &target, &max);
if ( &decision = IkeepI )

modify &Q ( status=evaluated; version=&newquerynum;
context=23; hi=23; lo=23; numpassages=&numpassages; name=&name )

if ( &decision = Idiscardi)
I

call CRemoveQuery( &newquerynum)
call CChangeContext( 23, &oldcontext)

modify &G ( subgoal=whatnext)

-Tighten the booleani operators.

rule TightenOps

&G (goal type--replaceops; subgoal=U);
&R ( reform next--narrow );
&Q (query status=evaluated)

local &oldquerynum : integer,
local &newquerynum: integer,
local &oldcontext :integer
local &namne: symbol;
local &oldnum : integer;
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local &numpassages :integer,
local &mnin, &target, &max: integer,
local &decision: symbol;

&oldnum = &Q.numpassages;
&min = &G.min;
&target = &G.justright;
&max = &G.niax;

&oldquerynum = &Q.version;
&newquerynum = &oldquerynum+1;
call CTightenOps( &oldquerynum, &newquerynum)

&oldcontext = &Q.context;
call CChangeContext( &oldcontext, 23)

call GPassQueryToMA( &newquerynum, &namne);
&numpassages = CGetNumPassages( &name);

- Check that the new stem doesn't put u.; outside the acceptable range.
&decision = CKeepChange( &oldnum, &numpassages, &min, &target, &max);
if ( &decision = IkeepI )

modify &Q ( status=evaluated; version=&newquerynuni;
context=23; hi=23; lo=23; numpassages=&numpassages; name=&name )

if ( &decision = Idiscardi)

call CRemoveQuery( &newquerynum)
call CChangeContext( 23, &oldcontext)

modify &G (subgoal=whatnext);

-removenots------------------------------------------------

-Remove andnots if we are continuing to broaden globally,
-and the last broaden step was replacing the boolean operators.

rule RemoveNotslnitl

&I( goal type-reformulate)
&R (reform global=broaden; next=broaden; lastglobal--replaceops; lastlocal=original;

laststate<>adjustcontext)

modify &G ( type--removenots)
modify &R (lastglobal--removenots; laststate--removenots; step=@.step+l)
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-Remove andnots if we are continuing to broaden globally,
-and the last broaden step was replacing the boolean operators.

rule RemoveNotslnit2

&G ( goal type--reformnulate)
&R (reform global=narrow- next=broaden; lastlocal--replaceops;

laststatec<'adjustcontext)

modify &G ( type--removenots)
modify &R ( lastlocal--removenots; laststate--removenots; step=@. step+ 1)

-Loosen the boolean operators.

-Remove Andnots.

rule RemoveNots
I

&G (goal type--removenots; subgoal=lII)
&Q (query status=evaluated)

local &oldquerynum : integer,
local &newquerynum :integer,
local &narne: symbol-,
local &oldnum : integer,
local &numpassages :integer,
local &min, &target, &max: integer,
local &decision: symbol;

&oldnumn = &Q.numpassages;
&min = &G.min;
&target = &G.justright;
&max = &G.niax;

&oldquerynumn = &Q.version;
&newquerynum = &oldquerynum. + 1;
call CRemoveAndnots( &oldquerynum, &newquerynum);

call CPassQueryToMA( &newquerynuni, &name);
&numpassages = CGetNumPassages( &nanme);

- Check that removing andnots doesn't put us outside the acceptable range.
&decision = CKeepChange( &oldnum, &numpassages, &mnin, &target, &max)
if ( &decision = IkeepI )

modify &Q ( status=evaluated; version--&newquerynum;
numpassages=&numpassages; name=&nane )
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if ( &decision = Idiscardi)
call CRernoveQuery( &newquerynum);

modify &G ( subgoal=whatnext)

-stop reformulation---------------------------------------------

-Final Broadening is by adjusting context.

rule FinalBroadening 1

&G ( goal type--reformulate)
&R (reform global=broaden; next--broaden; lastglobal--removenots)
&Q ( query status=evaluated; context<>26)

modify &G ( type=adjustcontext; subgoal~checkcontext)
modify &R ( laststate--adjustcontext)

rule FinalBroadening2

&G ( goal type--reformulate)
&R ( reform global=narrow; next--broaden; lastlocal--remnovenots)
&Q ( query status=evaluated; context<>26)

modify &G (type=adjustcontext; subgoal=checkcontext)
modify &R (laststate=:adjustcontext)

-No More Broadening Possible

rule NoMoreBroadeningl

&G ( goal type--reformulate)
&R (reform global=broaden; next--broaden; lastglobal--remnovenots)
&Q (query status=evaluated; context--26)

modify &G ( type=failure)
remove &R,
modify &Q ( status=final)

rule NoMoreBroadening2

&G ( goal type--reformulate)
&R ( reform global=narrow; next=broaden; lastlocal-replaceops)
&Q (query status=evaluated; context=26)
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modify &G ( type=failure)
remove &R.,
modify &Q ( status=flnal)

-Final Narrowing is by adjusting context.

rule FinalNarrowingi

&G ( goal type--reformulate)
&R (reform global=narrow, next=narrow; lastglobal--replaceops)
&Q ( query status=evaluated; context<>20)

modify &G ( type=adjustcontext; subgoal=checkcontext)
modify &R ( laststate=adjustcontext)

rule FinalNarrowing2

&G ( goal type--reformulate)
&R ( reform global=broaden; next--narrow; lastlocal--replaceops)
&Q ( query status=evaluated; context<>20)

modify &G ( type=adjustcontext; subgoal=checkcontext)
modify &R ( laststate=adjustcontext)

-No More Narrowing Possible

rule NoMoreNarrowingi

&G ( goal type--reformulate)
&R (reform global=narrow; next--narrow; lastglobal--replaceops)
&Q (query status=evaluated; context=20)

modify &G ( type=failure)
remove &R,
modify &Q ( status=final)

rule NoMoreNarrowing2

&G ( goal rtype-reformulate)
&R ( reform global=broaden; next=narrow; lastlocal--replaceops)
&Q (query staus=evaluated; context=20)

107



modify &G ( type=failure);
remove &R,
modify &Q ( status=final);

-= Goal: reformulate ---------------------------------------------------
- These rules play with context several times. There is an upper and lower
== bound, and we iterate until success.

- Adjust context to the query if we want to go in the global direction after
== having already gone in the local direction.

rule AdjustContextIniti [
&G ( goal type=reformulate);
&R (reform global=@.next; lastlocal<>original);

modify &G ( type=adjustcontext; subgoal=checkcontext);
modify &R ( laststate=adjustcontext);

- Adjust context to the query if we want to go locally in opposite direction
-= from the global goal, but we've already gone locally as far as we have
-= globally.

rule AdjustContextlnit2 (
&G ( goal type=reformulate);
&R ( reform global<>@.next; lastglobal=@.lasdocal);

modify &G ( type=adjustcontext; subgoal=checkcontext);
modify &R ( laststate=adjustcontext);
};

-- Once we have begun adjusting the context, continue to do so until success
-- or failure.

rule AdjustContextInit3{
&G ( goal type=reformulate);
&R ( reform laststate=adjustcontext);

modify &G ( type=adjustcontext; subgoal=checkcontext);

108



-We want to narrow the query but context is already minimumn.
-- Quit with this query as too broad is preferable.

rule CannotAdjustContextD:own

&G (goal type=adjustcontext; subgoal=checkcontext)
&R (reform next--narrow );
&Q (query status=evaluated; context=20)

modify &G (type=failure; subgoal=II)
modify &Q ( status=tinal)
remove &P,

- We want to broaden the query but context is already maximum.
- Quit with this query.

rule CannotAdjustContextUp

&G (goal type=adjustcontext; subgoal=checkcontext)
&R (reform next=broaden );
&Q (query status=evaluated; context=26)

modify &G ( type--failure; subgoal=II)
modify &Q ( status:;final)
remove &R;

- We want to narrow the query, but have already tried the narrower context.
- Quit with the current, broader, context rather than the narrower one.

rule DoNotAdjustContextDown

&G ( goal type=adjustcontext; subgoal=checkcontext)
&R (reform next--narrow );
&Q (query status=evaluated, (@.lo <> @.context))

modify &G ( type--failure; subgoal=lII)
modify &Q ( status=final)
remove &R;

-- We want to broaden the query, but have already tried the broader context.
-Quit with the previous, broader, context rather than the narrower one.
-This case is handled by just doing the regular AdjustContextUp.
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-- We are narrowing/broadening the context by one.

rule AdjustContext

&G (goal type=adjustcontext; subgoal=cbeckcontext)

modify &G ( subgoal=changecontext);

-- Goal: success-----------------------------------------

-- We have successfully located passages.

rule Success

&G ( goal type=success)
&Q ( query status=final)

local &version: integer,
local &numpassages :integer,

&version = &Q.version;
&numpassages = &Q.nunipassages;
if ( CDisplayOrNo( &version, &numpassages) display)

modify &G ( type=wtpassages)
else

modify &G ( type=cleanup)

-- Goal: failure -----------------------------------------

-We have unsuccessfully located passages.

rule Failure

&G ( goal type=failure)
&Q ( query status=final)

local &version : integer,
local &numpassages : integer,

&version = &Q.version;
&numpassages = &Q.numpassages;
if ( CDisplayOrNo( &version, &numpassages )=display)

modify &G ( type=wtpassages)
else

modify &G ( type=cleanup)
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-- Goal: wtpassages ---------------------------

-Rank the passages of the name from MICRoARRAS.

rule WtPassages

&G ( goal type=:wtpassages)
&Q ( query status=final)

local &passage: integer
local &validpassage: logical;
local &wt: real;
local &name : symbol;
local &displayname: symbol;
local &version: integer,
local &nuxnpassages :integer,

&namie =&Q.narne;
&Version = &Q.version;
&numpassages = &Q.numpassages;
call CWtPassages( &version, &numpassages, &namie, &displayname)
&validpassage = CGetFirstPassage( &displayname, &passage)
while (&validpassage)

&wt = CGetPassageWt( &passage)
make (passage status=undisplayed; id=&passage; wt=-&wt)
&validpassage = CGer.NextPassage( &displayname, &passage)

modify &G ( type-displaypassages)

-- Goal: displaypassages ---------------- ----------

-- Display the undisplayed passage of highest wt.
-If there are more than one passage of equal wt, use chronolgical order.
-- Get relevance feedback from the user.

rule InteractiveDisplayPassage

&G (goal type-displaypassages)
WI ( interactive);
&P (passage status~undisplayed)
-( passage status=undisplayed, wt > &P-wt;
-(passage status=undisplayed; wt = &P.wt; id < &P.id)

local &passage: integer,

&passage = &P.id;
call CDisplayPassage( &passage);
call CGetRelevanceo;
remove &P,



- Display the undisplayed passage of highest wt.
- If there are more than one passage of equal wt, use chronolgical order.

rule DisplayPassage(
&G (goal type=displaypassages);
- ( interactive );
&P (passage status=undisplayed);
- ( passage status=undisplayed; wt > &P.wt);
- (passage status=undisplayed; wt = &P.wt; id < &P.id);

local &passage : integer;,

&passage = &P.id;
call CDisplayPassage( &passage);
remove &P;1;

-- Remove the displaypassage goal when all passages have been shown.

rule DoneDisplayPassage
(

&G ( goal type-displaypassages);
- ( passage );

local &name:symbol;

modify &G ( type=cleanup);
1;

-- Goal: cleanup -----------------------------------------------------------

-- Check for unprocessed queries.

rule RemoveUnprocessedQueries
(

&G ( goal type=cleanup);
&Q (query (@.status <> reformulated A @.status <> final));

call CErrorHandle( lUnfinished queries in working memory.I);
remove &Q1;

- Remove any queries still in working memory.

rule RemoveOldQueries(
&G ( goal type=cleanup);
&Q ( query status=reformulated);
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remove &Q;

-- Remove any queries still in working memory.

rule RemoveFinalQuery(
&G ( goal type=cleanup);
&Q ( query status-final);

local &oldcontext: integer;,

&oldcontext = &Q.context;
call CChangeContext( &oldcontext, 23);
remove &Q;

-- Remove all concepts in working memory.

rule RemoveConcepts
I

&G ( goal type=cleanup);
&C (concept);

local &id: integer,

&id = &C.id;
call CRemoveConcept( &id);
remove &C,

-- Remove all stems in working memory.

rule RemoveStems(
&G ( goal type=cleanup);
&S (stem);

remove &S;

-- Remove any passages still in the system.

rule RemovePassages

&G ( goal type=cleanup);
&P (passage);
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call CErrorHandle( Unprocessed passages in working memory.I);
remove &P,1;

- Remove any reformulations still in the system.

rule RemoveReforms(
&G ( goal type=cleanup);
&R ( reform);

call CErrorHandle( Unprocessed reformulations in working memory. );
remove &R;

- Remove any goals in the system

rule RemoveGoals
(

&G ( goal type=cleanup);
&G2 (goal type<>cleanup);

call CErrorHandle( lUnprocessed goals in working memory.I);
remove &G2;

-- Get the next query.

rule GetNextQuery(
&G ( goal type=cleanup);

modify &G ( type=getquery);1;

-- Goal: quit --------------------------------------------------------

-- This rule is fired when the only goal left is type=quit.

rule Exit(
&G ( goal type=quit);
- ( interactive);

call CKillSystemo;
remove &G;
;
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-This rule is fired when the only goals left are type=quit and
-the session was interactive.

rule InteractiveExit

&G (goal type=quit)
&I (interactive);

call CKillSystemo;
remove &G;
remove &M;

11.3 OMain.ops

This module contains the main procedure.

module OMain (opsmain)
I
use OUtils;
use ORules;
use shell;

-opsmainO is the entry point for the program; It is the first procedure to
-execute when the program is started.

procedure opsmaino

local &tracename :symbol;

call CGetUniqueName( &tracenarne)
&TRACE = shellinit( &tracename)
call toplev( 0, &TRACE);
call close( &TRACE);
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Appendix III

Experiment Handouts

111.1 Query Language

IH.1.1 Query Language (User Only System)

Examples:
dog and (cat or kitten)
*dog and [nextword] *kennel
*dog and *cat andnot [-3 to +3 sentences] bird

Syntax:
term (operator optional_context term) *

term: word or stemgroup
word: lower case word
stemgroup: *word

operator: andnot, and, or

optional context: [context]
context: n to m unit (n < m) or nextword or sentence or paragraph
unit: words or sentences or paragraphs

1H.1.2 Query Language (User + Thesaurus)

Examples:
dog and (cat or kitten)
DOG_KENNEL
*dog and CAT andnot [ 3 to +3 sentences] bird

Syntax:
term (operator optionalcontext term) *

term: word or stemgroup
word: lower case word
stemgroup: *word or STEMNAME

operator: andnot, and, or

optional-context: [context]
context: n to m unit (n < m) or nextword or sentence or paragraph
unit: words or sentences or paragraphs
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111.1.3 Query Language (User + Expert System)

Examples:
dog and (cat or kitten)
dog-kennel
dog and cat andnot bird

Syntax:
term (operator term) *

term: word
word: lower case word

operator: andnot, and, or

term: word or phrase
phrase: word(word)+

No valid contexts! They are under the expert system's control!

111.2 Questions

l1.2.1 Query Set A

Practice:

What are some sources of error in floating point arithmetic?

Real:

How is computer architecture distinguished from the other
computer design domains?

What are some upward pressures on the level of a machine language?

Fixed length multiplication produces a double length result. How have different machines
handled this?

How are interrupts handled? Do not consider techniques to disable them.

III.2.2 Query Set B

Practice:

1/0 devices move. What is the effect of this motion on the architecture of computers?

Real:

What are some design principles that lead to clean architectures?
Do not consider the econonmic advantages of a quality design.

What techniques have been used to reduce bit traffic?

117



How are control structures implemented?

What role does buffering play in 1/O transfers?

III.2.3 Query Set C

Practice:

Fragmentation of memory is one problem of using a segmentation scheme. How is paging
used to fix this?

Real:

Discuss the two fundamentally different ways to formally specify an architecture.

What are the effects of having two zeros, as in the sign magnitude representation of fixed
point numbers?

What is done to save state upon a procedure call?

Besides 1/0, where is concurrency practiced in the implementation?

111.3 Questionnaire

Name:

User-only system:
Which techniques did you use for reformulating your queries? Check
all appropriate answers.

adjusting context
adding "or" terms - from knowledge, from reading passages
replacing terms - from knowledge, from reading passages
removing "and" terms
adding "andnot" terms
using *terms
whole new query

User-thesaurus system:
Did you use the thesaurus much?
If so, why? If not, why not?
Was it helpful?

User-expert system:
What did you like best?
What did you like least?

Which system was easiest to use?
User-only,
User+thesaurus,
User+expert system
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Which system gave the best results?
User-only,
User-ethesaurus,
User-iexpert system

Comments:
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Appendix IV

Experimental Data

IV.A Search performance summarized by system configuration.

IV.1.1 Number of queries entered.
Query User Alone with Thesaurus with ES Mean

1 4.50 6.00 2.25 4.25
2 7.75 4.50 2.25 4.83
3 6.75 9.75 3.75 6.75
4 7.00 3.25 1.75 4.00
5 5.00 6.00 1.25 4.08
6 2.75 4.75 1.00 2.83
7 3.75 7.00 1.50 4.08
8 2.25 2.50 1.00 1.92
9 8.00 10.00 3.25 7.08
10 2.75 5.50 3.75 4.00
11 4.25 2.25 2.75 3.08
12 3.25 4.00 3.75 3.67
Mean 4.83 5.46 2.35 4.22

IV.1.2 Time taken by the user (in seconds).
Query User Alone with Thesaurus with ES Mean

1 647.75 841.75 683.75 724.42
2 720.00 873.75 606.25 733.33
3 639.00 924.25 542.75 702.00
4 540.75 485.75 290.75 439.08
5 462.25 564.75 498.75 508.58
6 315.75 501.75 497.25 438.25
7 443.75 587.00 724.00 584.92
8 217.25 213.50 286.75 239.17
9 792.00 734.25 678.50 734.92
10 295.00 475.50 568.75 446.42
11 252.25 228.25 379.25 286.58
12 368.00 427.00 720.25 505.08
Mean474.48 571.46 539.75 528.56

IV.1.3 Number of relevant passages found (user relevance).
Query User Alone with Thesaurus with ES Mean

1 8.00 10.00 5.25 7.75
2 4.50 6.50 9.25 6.75
3 4.75 6.75 4.25 5.25
4 9.00 14.00 7.75 10.25
5 6.00 4.00 7.25 5.75
6 7.25 5.75 7.00 6.67
7 3.75 6.00 8.50 6.08
8 9.25 7.75 9.25 8.75
9 8.25 5.75 5.75 6.58
10 4.50 5.25 4.50 4.75
11 9.00 6.00 10.00 8.33
12 14.25 14.50 8.75 12.50
Mean 7.38 7.69 7.29 7.45
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IV.1.4 Precision (based on user relevance).
Query User Alone with Thesaurus with ES Mean

1 0.79 0.75 0.62 0.72
2 0.72 0.65 0.63 0.66
3 0.75 0.88 0.68 0.77
4 0.81 0.84 0.81 0.82
5 0.86 0.77 0.87 0.83
6 0.77 0.76 0.90 0.81
7 0.71 0.88 0.78 0.79
8 0.89 0.87 1.00 0.92
9 0.72 0.89 0.79 0.80
10 0.37 0.58 0.45 0.47
11 0.89 0.75 0.84 0.83
12 0.87 0.81 0.76 0.81
Mean 0.76 0.79 0.76 0.77

IV.1.5 Number of relevant passages found (absolute relevance).
Query User Alone with Thesaurus with ES Mean

1 3.75 5.00 4.75 4.50
2 3.00 4.25 6.75 4.67
3 4.25 5.50 3.50 4.42
4 10.00 12.50 8.00 10.17
5 4.75 2.50 5.25 4.17
6 6.00 4.00 6.75 5.58
7 2.75 3.50 4.75 3.67
8 9.25 8.00 8.25 8.50
9 3.25 3.50 3.25 3.33
10 3.00 3.00 1.75 2.58
11 6.00 5.50 8.00 6.50
12 10.25 11.25 7.75 9.75
Mean 5.52 5.71 5.73 5.65

IV.1.6 Recall (based on absolute relevance).
Query User Alone with Thesaurus with ES Mean

1 0.23 0.31 0.30 0.28
2 0.19 0.27 0.42 0.29
3 0.30 0.39 0.25 0.32
4 0.43 0.54 0.35 0.44
5 0.34 0.18 0.38 0.30
6 0.60 0.40 0.68 0.56
7 0.21 0.27 0.37 0.28
8 0.42 0.36 0.38 0.39
9 0.17 0.18 0.17 0.18
10 0.43 0.43 0.25 0.37
11 0.40 0.37 0.53 0.43
12 0.64 0.70 0.48 0.61
Mean 0.36 0.37 0.38 0.37
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IV.1.7 Precision (based on absolute relevance).
Query User Alone with Thesaurus with ES Mean

1 0.32 0.40 0.57 0.43
2 0.38 0.41 0.44 0.41
3 0.52 0.71 0.62 0.62
4 0.83 0.78 0.84 0.82
5 0.74 0.52 0.62 0.62
6 0.70 0.55 0.87 0.71
7 0.35 0.52 0.43 0.43
8 0.74 0.90 0.89 0.84
9 0.30 0.54 0.47 0.44
10 0.19 0.28 0.14 0.20
11 0.65 0.69 0.68 0.67
12 0.62 0.63 0.68 0.64
Mean 0.53 0.58 0.60 0.57

IV.2 Search Performance summarized by subject.

IV.2.1 Number of Queries entered by the user.
Subject User Alone with Thesaurus with ES Mean

1 3.75 2.75 2.75 3.08
2 7.75 6.50 5.75 6.67
3 2.75 5.75 1.50 3.33
4 5.00 8.75 3.25 5.67
5 6.50 5.50 1.50 4.50
6 5.00 2.25 2.50 3.25
7 3.50 7.25 3.75 4.83
8 5.75 4.50 2.25 4.17
9 5.00 5.00 1.00 3.67
10 1.75 6.75 1.75 3.42
11 6.75 5.00 1.25 4.33
12 4.50 5.50 1.00 3.67
Mean 4.83 5.46 2.35 3.81

IV.2.2 Time taken by the user.
Subject User Alone with Thesaurus with ES Mean

1 358.50 261.50 706.00 442.00
2 683.75 776.75 866.25 775.58
3 343.00 544.50 328.50 405.33
4 434.75 577.75 471.00 494.50
5 651.75 380.75 512.00 514.83
6 318.50 251.00 481.75 350.42
7 566.00 1104.50 670.25 780.25
8 377.50 316.00 476.25 389.92
9 450.75 767.25 409.25 542.42
10 152.50 648.00 470.25 423.58
11 893.50 520.25 419.00 610.92
12 463.25 709.25 666.50 613.00
Mean474.48 571.46 539.75 549.17
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IV.2.3 Number of relevant passages found (user relevance).
Subject User Alone with Thesaurus with ES Mean

1 6.75 4.5 7.5 6.25
2 6.75 6 4.75 5.83
3 6 9.5 7.25 7.58
4 12 7.25 6.75 8.67
5 7.5 9.25 8.75 8.50
6 5.5 5.75 10.5 7.25
7 6.75 7.75 6.5 7.00
8 6.25 5.5 4.75 5.50
9 8.25 10.75 8 9.00
10 7.25 8.5 7.5 7.75
11 6.5 8.25 7.75 7.50
12 9 9.25 7.5 8.58
Mean 7.38 7.69 7.29 7.94

IV.2.4 Precision (based on user relevance).
Subject User Alone with Thesaurus with ES Mean

1 0.58 0.88 0.77 0.74
2 0.37 0.74 0.51 0.54
3 0.68 0.78 0.70 0.72
4 0.71 0.69 0.72 0.71
5 0.93 0.89 0.91 0.91
6 1.00 0.97 0.96 0.98
7 0.76 0.75 0.66 0.72
8 0.86 0.57 0.47 0.63
9 0.73 0.73 0.94 0.80
10 0.94 0.68 0.77 0.79
11 0.78 0.90 0.91 0.86
12 0.82 0.85 0.79 0.82
Mean 0.76 0.79 0.76 0.83

IV.2.5 Number of relevant passages found (absolute relevance).
Subject User Alone with Thesaurus with ES Mean

1 4.75 4.25 6.50 5.17
2 8.25 4.00 3.75 5.33
3 5.50 7.00 5.75 6.08
4 7.00 5.00 4.25 5.42
5 5.50 5.50 7.25 6.08
6 2.75 4.75 5.25 4.25
7 7.25 6.75 6.00 6.67
8 5.25 6.25 5.75 5.75
9 6.00 8.00 6.00 6.67
10 4.75 5.75 6.50 5.67
11 4.50 5.75 6.00 5.42
12 4.75 5.50 5.75 5.33
Mean 5.52 5.71 5.73 5.47
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IV.2.6 Number of relevant passages (absolute relevance).
Subject User Alone with Thesaurus with ES Mean

1 4.75 4.25 6.50 5.17
2 8.25 4.00 3.75 5.33
3 5.50 7.00 5.75 6.08
4 7.00 5.00 4.25 5.42
5 5.50 5.50 7.25 6.08
6 2.75 4.75 5.25 4.25
7 7.25 6.75 6.00 6.67
8 5.25 6.25 5.75 5.75
9 6.00 8.00 6.00 6.67
10 4.75 5.75 6.50 5.67
11 4.50 5.75 6.00 5.42
12 4.75 5.50 5.75 5.33
Mean 5.52 5.71 5.73 5.47

IV.2.7 Recall (based on absolute relevance).
Subject User Alone with Thesaurus with ES Mean

1 0.36 0.31 0.38 0.35
2 0.46 0.25 0.25 0.32
3 0.39 0.37 0.41 0.39
4 0.45 0.31 0.24 0.33
5 0.28 0.36 0.53 0.39
6 0.15 0.33 0.34 0.27
7 0.47 0.41 0.44 0.44
8 0.40 0.45 0.34 0.39
9 0.45 0.43 0.43 0.44
10 0.31 0.47 0.36 0.38
11 0.27 0.40 0.43 0.37
12 0.38 0.31 0.40 0.36
Mean 0.36 0.37 0.38 0.37

IV.2.8 Precision (based on absolute relevance).
Subject User Alone with Thesaurus with ES Mean

1 0.44 0.80 0.72 0.65
2 0.43 0.46 0.41 0.43
3 0.63 0.56 0.58 0.59
4 0.39 0.47 0.50 0.45
5 0.56 0.52 0.77 0.62
6 0.46 0.76 0.39 0.54
7 0.82 0.67 0.58 0.69
8 0.49 0.58 0.58 0.55
9 0.52 0.50 0.72 0.58
10 0.59 0.43 0.67 O.56
11 0.60 0.59 0.70 0.63
12 0.41 0.56 0.61 0.53
Mean 0.53 0.58 0.60 0.57
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IV.3 Ranking summarized by user and query.

IV.3.1 Random ranking expected (queries versus subjects).
Query Si 52 S3 S4 S5 S6 S7 S8 S9 S10 Sll S12Mean

1 5.50 5.00 6.33 3.00 4.96
2 6.50 5.50 9.00 7.00 7.00
3 3.50 3.33 3.00 3.50 3.33
4 4.25 4.00 5.00 8.00 5.31
5 5.00 4.50 3.00 6.00 4.63
6 4.50 4.50 4.00 4.50 4.38
7 6.50 5.00 6.50 4.50 5.63
8 5.00 5.00 5.00 5.50 5.13
9 3.25 6.00 4.00 2.67 3.98

10 2.50 3.25 4.50 7.00 4.31
11 5.25 5.25 4.00 3.50 4.50
12 5.00 2.25 7.50 7.50 5.56

Mean4.94 4.00 4.19 4.46 5.25 5.00 5.17 5.83 4.75 5.38 4.63 5.13 4.89

IV.3.2 Ranking produced by expert system (queries versus subjects).
Query S1 52 S3 54 S5 S6 57 58 59 S10 Sl S12Mean

1 4.42 4.45 4.74 1.71 3.83
2 6.30 4.80 6.40 4.80 5.57
3 3.76 3.64 3.40 3.55 3.59
4 4.54 4.67 5.15 7.95 5.58
5 4.58 4.07 3.17 5.77 4.40
6 4.25 4.29 3.36 4.45 4.09
7 9.13 5.08 6.05 2.50 5.69
8 5.00 5.00 4.56 5.67 5.06
9 3.13 5.33 3.67 2.75 3.72

10 1.67 1.00 4.15 4.20 2.75
11 6.08 4.89 4.23 3.39 4.65
12 6.33 2.10 6.79 4.69 4.98

Mean4.75 4.30 3.33 4.39 5.74 4.71 3.76 4.92 4.61 4.50 4.29 4.59 4.49
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